Anton SchleissProf. Dr. Anton J. Schleiss graduated in Civil Engineering from the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, in 1978. After joining the Laboratory of Hydraulic, Hydrology and Glaciology at ETH as a research associate and senior assistant, he obtained a Doctorate of Technical Sciences on the topic of pressure tunnel design in 1986. After that he worked for 11 years for Electrowatt Engineering Ltd. (now Pöyry) in Zurich and was involved in the design of many hydropower projects around the world as an expert on hydraulic engineering and underground waterways. Until 1996 he was Head of the Hydraulic Structures Section in the Hydropower Department at Electrowatt. In 1997, he was nominated full professor and became Director of the Laboratory of Hydraulic Constructions (LCH) in the Civil Engineering Department of the Swiss Federal Institute of Technology Lausanne (EPFL). The LCH activities comprise education, research and services in the field of both fundamental and applied hydraulics and design of hydraulic structures and schemes. The research focuses on the interaction between water, sediment-rock, air and hydraulic structures as well as associated environmental issues and involves both numerical and physical modeling of water infrastructures. In May 2018, he became Honorary Professor at EPFL. More than 50 PhD and Postdoc research projects have been carried out under his guidance. From 1999 to 2009 he was Director of the Master of Advanced Studies (MAS) in Water Resources Management and Hydraulic Engineering held in Lausanne in collaboration with ETH Zurich and the universities of Innsbruck (Austria), Munich (Germany), Grenoble (France) and Liège (Belgium). From 2006 to 2012 he was the Head of the Civil Engineering program of EPFL and chairman of the Swiss Committee on Dams (SwissCOLD). In 2006, he obtained the ASCE Karl Emil Hilgard Hydraulic Price as well as the J. C. Stevens Award. He was listed in 2011 among the 20 international personalities that “have made the biggest difference to the sector Water Power & Dam Construction over the last 10 years”. Between 2014 and 2017 he was Council member of International Association for Hydro-Environment Engineering and Research (IAHR) and he was chair of the Europe Regional Division of IAHR until 2016. For his outstanding contributions to advance the art and science of hydraulic structures engineering he obtained in 2015 the ASCE-EWRI Hydraulic Structures Medal. The French Hydro Society (SHF) awarded him with the Grand Prix SHF 2018. After having served as vice-president between 2012 and 2015 he was president of the International Commission on Large Dams (ICOLD) from 2015 to 2018. On behalf of ICOLD he his the coordinator of the EU Horizon 2020 project "Hydropower Europe". With more than 40 years of experience he is regularly involved as a consultant and expert in large water infrastructures projects including hydropower and dams all over the world. Awards (besides those mentioned above): ASCE-Journal of Hydraulic Engineering Outstanding Reviewer Recognition 2013 ASCE-EWRI-Journal of Hydraulic Engineering 2014 Best Technical Note
David Andrew BarryResearch InterestsSubsurface hydrology, constructed wetlands, ecological engineering, in particular contaminant transport and remediation of soil and groundwater; more generally, models of hydrological and vadose zone processes; application of mathematical methods to hydrological processes; coastal zone sediment transport, aquifer-coastal ocean interactions; hydrodynamics and modelling of lakes.
Azin AminiEducation:
MSc.: Structural Engineering, University of Tehran, Iran, 2002
Master Thesis: "Three dimensional analysis of crack propagation in Latiyan butress dam using smeard crack model"
BSc.: Civil Engineering, University of Tehran, Iran, 2000
John Richard ThomeJohn R. Thome is Professor of Heat and Mass Transfer at the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland since 1998, where his primary interests of research are two-phase flow and heat transfer, covering both macro-scale and micro-scale heat transfer and enhanced heat transfer. He directs the Laboratory of Heat and Mass Transfer (LTCM) at the EPFL with a research staff of about 18-20 and is also Director of the Doctoral School in Energy. He received his Ph.D. at Oxford University, England in 1978. He is the author of four books: Enhanced Boiling Heat Transfer (1990), Convective Boiling and Condensation, 3rd Edition (1994), Wolverine Engineering Databook III (2004) and Nucleate Boiling on Micro-Structured Surfaces (2008). He received the ASME Heat Transfer Division's Best Paper Award in 1998 for a 3-part paper on two-phase flow and flow boiling heat transfer published in the Journal of Heat Transfer. He has received the J&E Hall Gold Medal from the U.K. Institute of Refrigeration in February, 2008 for his extensive research contributions on refrigeration heat transfer and more recently the 2010 ASME Heat Transfer Memorial Award. He has published widely on the fundamental aspects of microscale and macroscale two-phase flow and heat transfer and on enhanced boiling and condensation heat transfer.
Daniel FavratDaniel Favrat got his Master degree in Mechanical Engineering from EPFL in 1972 and his PhD also from EPFL. He then spent 12 years in industrial research laboratories in Canada (Esso Canada) and Switzerland (CERAC: Centre Européen de Recherche Atlas Copco). From 1988 to 2013, he was full professor and director of the Industrial Energy Systems Laboratory (LENI) at EPFL. During that period he was successively director of the Institute of Energy and director of the Institute of Mechanical Engineering. From August 2013 he works at EPFL Energy Center first as director ad interim and now as director technologies.
His research fields include systemic analyses accounting for energy, environment and economics (so-called environomic optimisation) and advanced conversion systems for a more rational use of energy (heat pumps &ORC, engines, fuel cells, power plants, etc).
He is a member of the Swiss Academy of Engineering Sciences and of the National Academy of Technology in France. He has also an active participation in the World Federation of Engineering Organizations (WFEO) as a member of the executive committee and vice-chair of the energy committee. He is associate editor of the journal "Energy" and of International Journal of thermodynamics. He is the author of several books on thermodynamics and energy systems analysis. He is also affiliate professor at the Royal Institute of Technology (KTH) in Stockholm.
Brice Tanguy Alphonse LecampionI am currently an assistant Professor and the head of the Geo-Energy Lab - Gaznat Chair on GeoEnergy at Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. Prior to joining EPFL, I have worked for Schlumberger in research and development from 2006 until May 2015 - serving in a variety of roles ranging from project manager to principal scientist in both Europe and the United States. I received my PhD in mechanics from Ecole Polytechnique, France in 2002 and worked as a research scientist in the hydraulic fracturing research group of CSIRO division of Petroleum resources (Melbourne, Australia) from 2003 to 2006. During my time in Schlumberger R&D, I have worked on problems related to the integrity of deep wells, large scale monitoring of reservoir deformation and more specifically on the stimulation of oil and gas wells by hydraulic fracturing. My current research interests cover hydraulic fracture mechanics, mechanics of porous media and dense suspensions flow.
Lyesse LalouiDirector, EPFL Soil Mechanics LaboratoryDirector, EPFL Civil Engineering SectionEditor in Chief, ElsevierMember of the Swiss Academy of Engineering SciencesFounding Partner, Geoeg & MeduSoilActive in academic research in the following institutions: Lausanne, EPFL, Durham, Duke University, Nanjing, Hohai UniversityProfessor Lyesse Laloui teaches at EPFL, where he directs the Soil Mechanics Laboratory as well as the Civil Engineering Section. He is a founding partner of the international engineering company Geoeg, and the start-up MeduSoil. In addition, he is an adjunct professor at Duke University, USA and an advisory professor at Hohai University, China as well as honorary director of the International Joint Research Center for Energy Geotechnics in China.He is the recipient of an Advance ERC grant for his BIO-mediated GEO-material Strengthening project. Editor in Chief of the Elsevier Geomechanics for Energy and the Environment journal, he is a leading scientist in the field of geomechanics and geo-energy. He has written and edited 13 books and published over 320 peer reviewed papers; his work is cited more than 6000 times with an h-index of 39 (Scopus). Two of his papers are among the top 1% in the academic field of Engineering. He has given keynote and invited lectures at more than 40 leading international conferences. He has received several international awards (IACMAG, RM Quigley, Roberval) and delivered honorary lectures (Vardoulakis, Minnesota; G.A. Leonards, Purdue; Kersten, Minnesota). He recently acted as the Chair of the international evaluation panel of Civil and Geological Engineering R&D Units of Portugal.Nov. 2019 For further information visit www.epfl.ch/labs/lms/ ; geoeg.net ; medusoil.com Esther AmstadEsther Amstad studied material science at ETH in Zurich. She also carried out her PhD thesis at the same University under the supervision of Prof. Marcus Textor; for her thesis, she worked on the surface modification and steric stabilization of oxide nanoparticles. As a postdoctoral fellow, she joined the experimental condensed soft matter group of David A. Weitz at Harvard University where she used droplet based microfluidics to assemble different types of functional micro- and nanomaterials. In addition, she developped new microfluidic devices that enable the production of very small, airborne drops as well as devices that produce highly monodisperse emulsion drops at a very high throughput. In June 2014, Esther joined the material science department (IMX) of EPFL where she is leading the Soft Materials Laboratory (SMAL).
François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.