Numerical modeling (geology)In geology, numerical modeling is a widely applied technique to tackle complex geological problems by computational simulation of geological scenarios. Numerical modeling uses mathematical models to describe the physical conditions of geological scenarios using numbers and equations. Nevertheless, some of their equations are difficult to solve directly, such as partial differential equations. With numerical models, geologists can use methods, such as finite difference methods, to approximate the solutions of these equations.
StratumIn geology and related fields, a stratum (: strata) is a layer of rock or sediment characterized by certain lithologic properties or attributes that distinguish it from adjacent layers from which it is separated by visible surfaces known as either bedding surfaces or bedding planes. Prior to the publication of the International Stratigraphic Guide, older publications have defined a stratum as either being either equivalent to a single bed or composed of a number of beds; as a layer greater than 1 cm in thickness and constituting a part of a bed; or a general term that includes both bed and lamina.
SiltationSiltation is water pollution caused by particulate terrestrial clastic material, with a particle size dominated by silt or clay. It refers both to the increased concentration of suspended sediments and to the increased accumulation (temporary or permanent) of fine sediments on bottoms where they are undesirable. Siltation is most often caused by soil erosion or sediment spill. It is sometimes referred to by the ambiguous term "sediment pollution", which can also refer to a chemical contamination of sediments accumulated on the bottom, or to pollutants bound to sediment particles.
SedimentSediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand and silt can be carried in suspension in river water and on reaching the sea bed deposited by sedimentation; if buried, they may eventually become sandstone and siltstone (sedimentary rocks) through lithification.
Bed loadThe term bed load or bedload describes particles in a flowing fluid (usually water) that are transported along the stream bed. Bed load is complementary to suspended load and wash load. Bed load moves by rolling, sliding, and/or saltating (hopping). Generally, bed load downstream will be smaller and more rounded than bed load upstream (a process known as downstream fining). This is due in part to attrition and abrasion which results from the stones colliding with each other and against the river channel, thus removing the rough texture (rounding) and reducing the size of the particles.
Aeolian processesAeolian processes, also spelled eolian, pertain to wind activity in the study of geology and weather and specifically to the wind's ability to shape the surface of the Earth (or other planets). Winds may erode, transport, and deposit materials and are effective agents in regions with sparse vegetation, a lack of soil moisture and a large supply of unconsolidated sediments. Although water is a much more powerful eroding force than wind, aeolian processes are important in arid environments such as deserts.
BedrockIn geology, bedrock is solid rock that lies under loose material (regolith) within the crust of Earth or another terrestrial planet. Bedrock is the solid rock that underlies looser surface material. An exposed portion of bedrock is often called an outcrop. The various kinds of broken and weathered rock material, such as soil and subsoil, that may overlie the bedrock are known as regolith. The surface of the bedrock beneath the soil cover (regolith) is also known as rockhead in engineering geology, and its identification by digging, drilling or geophysical methods is an important task in most civil engineering projects.
WaterfallA waterfall is any point in a river or stream where water flows over a vertical drop or a series of steep drops. Waterfalls also occur where meltwater drops over the edge of a tabular iceberg or ice shelf. Waterfalls can be formed in several ways, but the most common method of formation is that a river courses over a top layer of resistant bedrock before falling on to softer rock, which erodes faster, leading to an increasingly high fall. Waterfalls have been studied for their impact on species living in and around them.
Fracture (geology)A fracture is any separation in a geologic formation, such as a joint or a fault that divides the rock into two or more pieces. A fracture will sometimes form a deep fissure or crevice in the rock. Fractures are commonly caused by stress exceeding the rock strength, causing the rock to lose cohesion along its weakest plane. Fractures can provide permeability for fluid movement, such as water or hydrocarbons. Highly fractured rocks can make good aquifers or hydrocarbon reservoirs, since they may possess both significant permeability and fracture porosity.
FloodplainA floodplain or flood plain or bottomlands is an area of land adjacent to a river. Floodplains stretch from the banks of a river channel to the base of the enclosing valley, and experience flooding during periods of high discharge. The soils usually consist of clays, silts, sands, and gravels deposited during floods. Because of regular flooding, floodplains frequently have high soil-fertility since nutrients are deposited with the flood waters.