Martingale representation theoremIn probability theory, the martingale representation theorem states that a random variable that is measurable with respect to the filtration generated by a Brownian motion can be written in terms of an Itô integral with respect to this Brownian motion. The theorem only asserts the existence of the representation and does not help to find it explicitly; it is possible in many cases to determine the form of the representation using Malliavin calculus. Similar theorems also exist for martingales on filtrations induced by jump processes, for example, by Markov chains.
Branching processIn probability theory, a branching process is a type of mathematical object known as a stochastic process, which consists of collections of random variables. The random variables of a stochastic process are indexed by the natural numbers. The original purpose of branching processes was to serve as a mathematical model of a population in which each individual in generation produces some random number of individuals in generation , according, in the simplest case, to a fixed probability distribution that does not vary from individual to individual.
Log probabilityIn probability theory and computer science, a log probability is simply a logarithm of a probability. The use of log probabilities means representing probabilities on a logarithmic scale , instead of the standard unit interval. Since the probabilities of independent events multiply, and logarithms convert multiplication to addition, log probabilities of independent events add. Log probabilities are thus practical for computations, and have an intuitive interpretation in terms of information theory: the negative of the average log probability is the information entropy of an event.
Taylor expansions for the moments of functions of random variablesIn probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. Given and , the mean and the variance of , respectively, a Taylor expansion of the expected value of can be found via Since the second term vanishes. Also, is . Therefore, It is possible to generalize this to functions of more than one variable using multivariate Taylor expansions.
Gilbert–Shannon–Reeds modelIn the mathematics of shuffling playing cards, the Gilbert–Shannon–Reeds model is a probability distribution on riffle shuffle permutations that has been reported to be a good match for experimentally observed outcomes of human shuffling, and that forms the basis for a recommendation that a deck of cards should be riffled seven times in order to thoroughly randomize it. It is named after the work of Edgar Gilbert, Claude Shannon, and J. Reeds, reported in a 1955 technical report by Gilbert and in a 1981 unpublished manuscript of Reeds.
Poisson point processIn probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one another. The Poisson point process is often called simply the Poisson process, but it is also called a Poisson random measure, Poisson random point field or Poisson point field.
Random numberIn mathematics and statistics, a random number is either Pseudo-random or a number generated for, or part of, a set exhibiting statistical randomness. A 1964-developed algorithm is popularly known as the Knuth shuffle or the Fisher–Yates shuffle (based on work they did in 1938). A real-world use for this is sampling water quality in a reservoir. In 1999, a new feature was added to the Pentium III: a hardware-based random number generator. It has been described as "several oscillators combine their outputs and that odd waveform is sampled asynchronously.
Variance functionIn statistics, the variance function is a smooth function which depicts the variance of a random quantity as a function of its mean. The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling. It is a main ingredient in the generalized linear model framework and a tool used in non-parametric regression, semiparametric regression and functional data analysis. In parametric modeling, variance functions take on a parametric form and explicitly describe the relationship between the variance and the mean of a random quantity.
Infinite monkey theoremThe infinite monkey theorem states that a monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type any given text, including the complete works of William Shakespeare. In fact, the monkey would almost surely type every possible finite text an infinite number of times. The theorem can be generalized to state that any sequence of events which has a non-zero probability of happening will almost certainly eventually occur, given unlimited time.
Algorithmically random sequenceIntuitively, an algorithmically random sequence (or random sequence) is a sequence of binary digits that appears random to any algorithm running on a (prefix-free or not) universal Turing machine. The notion can be applied analogously to sequences on any finite alphabet (e.g. decimal digits). Random sequences are key objects of study in algorithmic information theory. As different types of algorithms are sometimes considered, ranging from algorithms with specific bounds on their running time to algorithms which may ask questions of an oracle machine, there are different notions of randomness.