Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper presents a novel simulation approach for generating synthetic households, addressing several literature gaps from the methodological viewpoint. The generation of hierarchical datasets such as complete households is challenging since it must guar ...
Given two jointly distributed random variables (X,Y), a functional representation of X is a random variable Z independent of Y, and a deterministic function g(⋅,⋅) such that X=g(Y,Z). The problem of finding a minimum entropy functional representation is kn ...
This paper introduces a new modeling and inference framework for multivariate and anisotropic point processes. Building on recent innovations in multivariate spatial statistics, we propose a new family of multivariate anisotropic random fields, and from th ...
A kernel method for estimating a probability density function from an independent and identically distributed sample drawn from such density is presented. Our estimator is a linear combination of kernel functions, the coefficients of which are determined b ...
One major challenge in distributed learning is to efficiently learn for each client when the data across clients is heterogeneous or non iid (not independent or identically distributed). This provides a significant challenge as the data of the other client ...
The field of synthetic data is more and more present in our everyday life. The transportation domain is particularly interested in improving the methods for the generation of synthetic data in order to address the privacy and availability issue of real dat ...
Ultrafast ultrasound imaging, characterized by high frame rates, generates low-quality images. Convolutional neural networks (CNNs) have demonstrated great potential to enhance image quality without compromising the frame rate. However, CNNs have been most ...
Diffusion is one of the most important phenomena studied in science ranging from physics to biology and, in abstract form, even in social sciences. In the field of materials science, diffusion in crystalline solids is of particular interest as it plays a p ...
Functional data are typically modeled as sample paths of smooth stochastic processes in order to mitigate the fact that they are often observed discretely and noisily, occasionally irregularly and sparsely. The smoothness assumption is imposed to allow for ...
TAYLOR & FRANCIS LTD2023
, , , ,
This work introduces DiGress, a discrete denoising diffusion model for generating graphs with categorical node and edge attributes. Our model utilizes a discrete diffusion process that progressively edits graphs with noise, through the process of adding or ...