Giuseppe CarleoGiuseppe Carleo is a computational quantum physicist, whose main focus is the development of advanced numerical algorithms tostudy challenging problems involving strongly interacting quantum systems.He is best known for the introduction of machine learning techniques to study both equilibrium and dynamical properties,based on a neural-network representations of quantum states, as well for the time-dependent variational Monte Carlo method.He earned a Ph.D. in Condensed Matter Theory from the International School for Advanced Studies (SISSA) in Italy in 2011.He held postdoctoral positions at the Institut d’Optique in France and ETH Zurich in Switzerland, where he alsoserved as a lecturer in computational quantum physics.In 2018, he joined the Flatiron Institute in New York City in 2018 at the Center for Computational Quantum Physics (CCQ), working as a Research Scientist and project leader, and also leading the development of the open-source project NetKet.Since September 2020 he is an assistant professor at EPFL, in Switzerland, leading the Computational Quantum Science Laboratory (CQSL).
Sylvain BréchetSylvain Bréchet was born on October 13th, 1981 in Moudon (legal origin Epesses, VD, Switzerland).
He obtained a Master of Science in physics at EPFL in 2005. He went on to Cambridge for his PhD studies in theoretical cosmology from 2005 to 2009 under the supervision of Prof. Lasenby (FRS) and Prof. Michael Hobson at the Cavendish Laboratory of the University of Cambridge.
He went back to EPFL where he is since 2010 university lecturer and research scientist in the Institute of Condensed Matter Physics. He taught classical mechanics, special relativity and thermodynamics to mechanical, electrical engineering students and physics students.
He is currently writing a textbook in thermodynamics.
Jean-Philippe BrantutI did my PhD at the Institut d'Optique under the direction of Philippe Bouyer and Alain Aspect, before moving to ETHZ in the group of Tilman Esslinger, first as a post-doc then as a senior scientist. There I developed in particular the method allowing for a quantum simulation of nano-electronic devices with ultracold quantum gases.Since september 2016, I hold the Fondation Sandoz chair in physics of quantum gases at EPFL. There, my group has developed the first cold atoms machine combining Fermi gases with cavity-quantum electrodynamics. We use it to explore new ways of measuring and manipulating quantum matter.