Wolfgang PauliWolfgang Ernst Pauli (ˈpɔːli; ˈvɔlfɡaŋ ˈpaʊli; 25 April 1900 – 15 December 1958) was an Austrian theoretical physicist and one of the pioneers of quantum physics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics for his "decisive contribution through his discovery of a new law of Nature, the exclusion principle or Pauli principle". The discovery involved spin theory, which is the basis of a theory of the structure of matter.
Antiunitary operatorIn mathematics, an antiunitary transformation, is a bijective antilinear map between two complex Hilbert spaces such that for all and in , where the horizontal bar represents the complex conjugate. If additionally one has then is called an antiunitary operator. Antiunitary operators are important in quantum theory because they are used to represent certain symmetries, such as time reversal. Their fundamental importance in quantum physics is further demonstrated by Wigner's theorem.
Quantum eraser experimentIn quantum mechanics, a quantum eraser experiment is an interferometer experiment that demonstrates several fundamental aspects of quantum mechanics, including quantum entanglement and complementarity. The quantum eraser experiment is a variation of Thomas Young's classic double-slit experiment. It establishes that when action is taken to determine which of 2 slits a photon has passed through, the photon cannot interfere with itself. When a stream of photons is marked in this way, then the interference fringes characteristic of the Young experiment will not be seen.
Algebraic quantum field theoryAlgebraic quantum field theory (AQFT) is an application to local quantum physics of C*-algebra theory. Also referred to as the Haag–Kastler axiomatic framework for quantum field theory, because it was introduced by . The axioms are stated in terms of an algebra given for every open set in Minkowski space, and mappings between those. Let be the set of all open and bounded subsets of Minkowski space. An algebraic quantum field theory is defined via a net of von Neumann algebras on a common Hilbert space satisfying the following axioms: Isotony: implies .
Charged particleIn physics, a charged particle is a particle with an electric charge. It may be an ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons. It can also be an electron or a proton, or another elementary particle, which are all believed to have the same charge (except antimatter). Another charged particle may be an atomic nucleus devoid of electrons, such as an alpha particle. A plasma is a collection of charged particles, atomic nuclei and separated electrons, but can also be a gas containing a significant proportion of charged particles.
Central chargeIn theoretical physics, a central charge is an operator Z that commutes with all the other symmetry operators. The adjective "central" refers to the center of the symmetry group—the subgroup of elements that commute with all other elements of the original group—often embedded within a Lie algebra. In some cases, such as two-dimensional conformal field theory, a central charge may also commute with all of the other operators, including operators that are not symmetry generators.
Probability currentIn quantum mechanics, the probability current (sometimes called probability flux) is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. It is a real vector that changes with space and time. Probability currents are analogous to mass currents in hydrodynamics and electric currents in electromagnetism. As in those fields, the probability current (i.e.
Wigner's theoremWigner's theorem, proved by Eugene Wigner in 1931, is a cornerstone of the mathematical formulation of quantum mechanics. The theorem specifies how physical symmetries such as rotations, translations, and CPT are represented on the Hilbert space of states. The physical states in a quantum theory are represented by unit vectors in Hilbert space up to a phase factor, i.e. by the complex line or ray the vector spans.
Phase-space formulationThe phase-space formulation of quantum mechanics places the position and momentum variables on equal footing in phase space. In contrast, the Schrödinger picture uses the position or momentum representations (see also position and momentum space). The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution (instead of a wave function, state vector, or density matrix) and operator multiplication is replaced by a star product.
Position and momentum spacesIn physics and geometry, there are two closely related vector spaces, usually three-dimensional but in general of any finite dimension. Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.