A class of deep Boltzmann machines is considered in the simplified framework of a quenched system with Gaussian noise and independent entries. The quenched pressure of a K-layers spin glass model is studied allowing interactions only among consecutive laye ...
Stochastic gradient descent (SGD) and randomized coordinate descent (RCD) are two of the workhorses for training modern automated decision systems. Intriguingly, convergence properties of these methods are not well-established as we move away from the spec ...
This work studies multi-agent sharing optimization problems with the objective function being the sum of smooth local functions plus a convex (possibly non-smooth) function coupling all agents. This scenario arises in many machine learning and engineering ...
We explore consequences of the Averaged Null Energy Condition (ANEC) for scaling dimensions Delta of operators in four-dimensional N = 1 superconformal field theories. We show that in many cases the ANEC bounds are stronger than the corresponding unitarity ...
We present a strikingly simple proof that two rules are sufficient to automate gradient descent: 1) don’t increase the stepsize too fast and 2) don’t overstep the local curvature. No need for functional values, no line search, no information about the func ...
Semidefinite programming (SDP) is a powerful framework from convex optimization that has striking potential for data science applications. This paper develops a provably correct algorithm for solving large SDP problems by economizing on both the storage an ...
This paper introduces a method for computing points satisfying the second-order necessary optimality conditions for nonconvex minimization problems subject to a closed and convex constraint set. The method comprises two independent steps corresponding to t ...
Combining diffusion strategies with complementary properties enables enhanced performance when they can be run simultaneously. In this article, we first propose two schemes for the convex combination of two diffusion strategies, namely, the power-normalize ...
We consider the problem of finding an optimal transport plan between an absolutely continuous measure and a finitely supported measure of the same total mass when the transport cost is the unsquared Euclidean distance. We may think of this problem as close ...