Cathrin BriskenCathrin Brisken, MD, PhD, is Associate Professor of Life Sciences at the Swiss Federal Institute of Technology Lausanne (EPFL). Dr. Brisken is internationally recognized for her work on endocrine control of mammary gland development and breast carcinogenesis.
Dr. Brisken received her MD and her PhD degree in Biophysics from the Georg August University of Göttingen, Germany. She completed her postdoctoral work in cancer biology with Dr. R.A. Weinberg at the Whitehead Institute of Biomedical Research in Cambridge, MA, USA. She previously held appointments at the Cancer Center of the Massachusetts General Hospital, Harvard Medical School, Boston and the Swiss Institute for Experimental Cancer Research (ISREC).
Research in Dr. Brisken’s laboratory focuses on the cellular and molecular underpinnings of estrogen and progesterone receptor signaling in the breast and the respective roles of these hormones and hormonally active compounds in carcinogenesis. The aim is to understand how recurrent exposures to endogenous and exogenous hormones contribute to breast carcinogenesis in order to better prevent and treat the disease. The laboratory has pioneered in vivo approaches to genetically dissect the role of the reproductive hormones in driving mouse mammary gland development and shown how they control intercellular communication. Dr. Brisken’s group has developed ex vivo and humanized mouse models using patient samples to study hormone action in human tissues in normal settings and during disease progression.
Dr. Brisken is member of the International Breast Cancer Study Group (IBCSG) Biological Protocol Working Group. She served as Dean of EPFL Doctoral School (more than 2000 PhD students in 18 PhD programs), as member of the Hinterzartener Kreis, the oncology think-tank associated with the German Science Foundation, and numerous Swiss, European, and AACR committees. She co-founded the International Cancer Prevention Institute.
Henry MarkramHenry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps.
He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band.
He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction.
He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the tabula rasa principle which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing.
In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markrams lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring.
At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the blue-print of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBMs most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markrams lab has now set the agenda towards whole brain and molecular modeling.
With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the Intense World Syndrome proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism.
Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
Lothar HelmLothar Helm was born in Gernsbach (Germany) in 1952. He studied physics at the University of Karlsruhe (Germany) and obtained his diploma degree in 1977. He remained in Karlsruhe for his Ph.D. research with Prof. H. G. Hertz and received his degree in physical chemistry in 1980. In 1980 he joined the laboratories of Prof. André Merbach at the University of Lausanne, Switzerland. From 1983 to 2001 he was maître denseignement et de recherche at the Faculty of Science of the University of Lausanne. In 2001 he moved, together with the whole chemistry department, from the University of Lausanne to the Ecole Polytechnique Fédérale de Lausanne (EPFL). Since 2006 he is adjunct professor at the Institute of Chemical Sciences and Engineering at EPFL and director of the NMR services of the institute.
From 2007 to 2011 he was director of the "Conférence du corps Enseignant" at EPFL. Since 2011 he is member of the School Assembly of EPFL (AE).
MAIN RESEARCH INTERESTS:
Physico-chemical studies of contrast agents for medical magnetic resonance imaging (MRI)
Study of reactivity and reaction mechanisms in coordination chemistry by variable temperature and pressure nuclear magnetic resonance
Computer simulation of solvent dynamics on cations and metal complexes in solution
Professional course
Yann BarrandonYann Barrandon graduated in Medicine in Paris where he also trained as a dermatologist and completed his PhD on the long term cultivation of human haematopoietic stem cells in 1982 under the direction of Dr. Catherine Dresch (Centre Hayem, St Louis Hospital). He worked as a post-doctoral fellow (1982-1983) with Pr. Marvin Karasek in the Department of Dermatology at Stanford University CA, and then with Pr. Howard Green, a pioneer in cell therapy, in the Department of Molecular and Cellular Physiology at Harvard Medical School (1983-1990). During this period, he participated in the world's first transplantations of epidermal stem cells on extensive third degree wounds and contributed several seminal findings including the demonstration of stem cells in cultures of human keratinocytes (PNAS 1987), and that human keratinocyte stem cells could be efficiently transduced by retroviral vectors (Science 1987), in collaboration with Richard Mulligan at the Whitehead Institute for Biomedical Research (Massachussets Institute of Technology, Cambridge, USA). He has also participated to the transfer of the stem cell technology from Harvard University to a spin off biotechnology company, now part of Genzyme Corp.
He returned to France in 1990 as Director of Research at the INSERM and Head of Lab at the Ecole Normale Supérieure, Paris. During this period, he demonstrated the presence of multipotent clonogenic stem cells in hair follicles (Cell 1994, 2001) and successfully brought stem cells from bench to bedside demonstrating the usefulness of a fibrin matrix to transplant epidermal stem cells. (Transplantation, 2000). Following his move to Lausanne, Yann Barrandon has shown that oligopotent stem cells are present in the mammalian cornea (Nature 2008), challenging previous dogma. He has also contributed to the characterisation of several skin diseases (Nature Genetics, 1993a, 1993b, 2000, 2005) and towards gene therapy of dystrophic epidermolysis bullosa. He is a partner in several EEC stem cell consortia (FP6: Therapeuskin and EuroStemCell, FP7: EuroSyStem, OptiStem, BetaCellTherapy).
Current research targets the role of small microenvironmental variations on stem cell behavior, and exploring the potency of stem cells of stratified epithelia (skin, esophagus, ocular surface) and of thymic epithelial cells. The lab is also involved in understanding the factors that regulate stem cell engraftment to improve epithelial cell therapy. An important aspect of the research aims at setting up a pilot clinical trial to demonstrate the feasibility of ex vivo gene therapy to treat Dystrophic Epidermolysis Bullosa, a rare but horrendous congenital disease of the skin that results in continuous blistering of the skin, chronic wounds, fusion of fingers and development of carcinoma.
Yann Barrandon was a member of the Faculty Council of the EPFL School of Life Sciences 2006-2008, of the Board of Swiss Stem Cell Network, 2004-2009, and is a member of the EPFL Ethics Committee since 2008. He is a reviewer for major scientific journals and for major granting agencies abroad. He is a member of the board of Directors of the International Society for Differentiation (ISD) and of the Tissue Engineering and Regenerative Medicine International Society (TERMIS) and was a Member of the Board of Directors of the European Tissue Repair Society, 1990-1995. He was elected as EMBO member in 2009.
He has given over 300 invited conferences and seminars worldwide on the biology and the therapeutic use of cutaneous stem cells including:
Gordon Research Conferences, Tissue Repair and Regeneration, June 2005, New London, USA,
Keystone Symposia on Stem Cells, April 2006, Whistler, Canada
Keystone Symposia, Stem Cell Interactions with their Microenvironmental Niche, March 2007, Keystone, USA
Keystone Symposia, Stem Cell Niche Interactions, April 2009, Whistler, Canada
Gordon Research Conferences, Epithelial Stem Cells, June 2009, Les Diablerets, Switzerland
7th Meeting of the International Society Stem Cell Research, July 2009, Barcelona, Spain
16th International Society for Developmental Biologists, Edinburgh, Scotland, UK, Sept 2009
Yann Barrandon has given multiple media interviews and participated to different reportages:
LCI, TF1, France 2, France 3, RSR (Radio Suisse Romande), TSR (Television Suisse Romande), and articles in newspapers: Figaro, La Croix, Le Temps, LHebdo, Le Nouvelliste, etc. He was also a participant in the movie A Stem Cell Story, EuroStemCell, Best TV/video production, Tromsø Science Media Festival; Best short film, Scinema (Australia); In competition, Science Film Festival (Bangkok), BaKaFORUM 2007, Vedere la Scienza
He organized the second EuroStemCell international conference Advances in Stem Cell Research supported by the EMBO and held in Lausanne 8-10 September 2006. He regularly participates as faculty to the EEC funded Stem Cell Summer School held in Hydra Greece since 2005.
Mor-Miri MishkovskyI am a chemist, graduated Cum Laude in 2002 from Tel Aviv University in Israel. I obtained a PhD in Physical Chemistry from the Weizmann Institute of Science in Israel on the development of new technology for rapid detection of nuclear magnetic resonance (NMR) spectroscopic data aiming at reducing the measurement time from hours to a fraction of second with Prof. Lucio Frydman. My thesis “Methodological Developments in Ultrafast Multidimensional NMR” granted me the Auto Swartz excellence award in 2007. Since 2009 I am working with the Laboratory of Functional and Metabolic Imaging at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, on the development of hyperpolarized (HP) magnetic resonance spectroscopy (MRS) methodologies for monitoring biochemical processes in real-time.My research is focused on the development of Magnetic Resonance (MR) Molecular Imaging by dissolution dynamic nuclear polarization (dDNP). HP agents to interrogate biochemical processes in real-time are applied in vivo in the healthy brain and disease models, aiming at improving our understanding of cerebral function and metabolism toward better clinical diagnostics and therapy.
Paul BowenDr. P. Bowen after gaining his BSc in Physics at Imperial College (UK), he obtained his Ph.D. in Physical Chemistry in the field of catalysis from the University of Cambridge, UK, in 1982, He then worked at the BP Research Centre, Sunbury, UK, for 4 years in applied surface sciences before moving to Switzerland and EPFL in 1987. He has been at the Powder Technology Laboratory, in the Materials Institute since its conception in 1988. He has over 190 publications and has written an undergraduate book on ceramic synthesis and processing. Education: 1976-1979 Imperial College of Science and Technology, University of London. B.Sc. Honours in Physics. 1979-1982 Department of Physical Chemistry, University of Cambridge. Certificate of Postgraduate Studies in Chemistry. Thesis: A Mössbauer Study of Some Clay Minerals and their Surfaces. Ph.D. in Physical Chemistry. Thesis: An Iron-57 and Tin-119 Mössbauer Spectroscopic Study of Some Graphite Intercalation Compounds and Carbon Supported Iron Catalysts. Professional Experience: 1983-1986 Research Scientist (Physical Chemist), New Technology Division, British Petroleum Company plc, BP Research Centre, Sunbury on Thames, Middlesex TW16 7LN, England. 1987-1988 Engineer, Ceramics Laboratory, Département des Matériaux, Ecole Polytechnique Fédérale de Lausanne, CH - 1015 Lausanne, Switzerland. 1988-2008 Research Associate/lecturer, Powder Technology Laboratory (Present) Institute des Matériaux, Ecole Polytechnique Fédérale de Lausanne, CH - 1015 Lausanne, Switzerland. 1988- 2015 Maitre DEnsiegnement et Recherche (Lecturer & Researcher), Powder Technology Laboratory, Institute des Matériaux, Ecole Polytechnique Fédérale de Lausanne,CH - 1015 Lausanne, Switzerland 2015 – present Adjunct Professor (Professeur Titulaire), Powder Technology Laboratory (LTP), Materials Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH - 1015 Lausanne, Switzerland
Jürgen BruggerI am a Professor of Microengineering and co-affiliated to Materials Science. Before joining EPFL I was at the MESA Research Institute of Nanotechnology at the University of Twente in the Netherlands, at the IBM Zurich Research Laboratory, and at the Hitachi Central Research Laboratory, in Tokyo, Japan. I received a Master in Physical-Electronics and a PhD degree from Neuchâtel University, Switzerland. Research in my laboratory focuses on various aspects of MEMS and Nanotechnology. My group contributes to the field at the fundamental level as well as in technological development, as demonstrated by the start-ups that spun off from the lab. In our research, key competences are in micro/nanofabrication, additive micro-manufacturing, new materials for MEMS, increasingly for wearable and biomedical applications. Together with my students and colleagues we published over 200 peer-refereed papers and I had the pleasure to supervise over 25 PhD students. Former students and postdocs have been successful in receiving awards and starting their own scientific careers. I am honoured for the appointment in 2016 as Fellow of the IEEE “For contributions to micro and nano manufacturing technology”. In 2017 my lab was awarded an ERC AdvG in the field of advanced micro-manufacturing.