Anthony Christopher DavisonAnthony Davison has published on a wide range of topics in statistical theory and methods, and on environmental, biological and financial applications. His main research interests are statistics of extremes, likelihood asymptotics, bootstrap and other resampling methods, and statistical modelling, with a particular focus on the first currently. Statistics of extremes concerns rare events such as storms, high winds and tides, extreme pollution episodes, sporting records, and the like. The subject has a long history, but under the impact of engineering and environmental problems has been an area of intense development in the past 20 years. Davison''s PhD work was in this area, in a project joint between the Departments of Mathematics and Mechanical Engineering at Imperial College, with the aim of modelling potential high exposures to radioactivity due to releases from nuclear installations. The key tools developed, joint with Richard Smith, were regression models for exceedances over high thresholds, which generalized earlier work by hydrologists, and formed the basis of some important later developments. This has led to an ongoing interest in extremes, and in particular their application to environmental and financial data. A major current interest is the development of suitable methods for modelling rare spatio-temporal events, particularly but not only in the context of climate change. Likelihood asymptotics too have undergone very substantial development since 1980. Key tools here have been saddlepoint and related approximations, which can give remarkably accurate approximate distribution and density functions even for very small sample sizes. These approximations can be used for wide classes of parametric models, but also for certain bootstrap and resampling problems. The literature on these methods can seem arcane, but they are potentially widely applicable, and Davison wrote a book joint with Nancy Reid and Alessandra Brazzale intended to promote their use in applications. Bootstrap methods are now used in many areas of application, where they can provide a researcher with accurate inferences tailor-made to the data available, rather than relying on large-sample or other approximations of doubtful validity. The key idea is to replace analytical calculations of biases, variances, confidence and prediction intervals, and other measures of uncertainty with computer simulation from a suitable statistical model. In a nonparametric situation this model consists of the data themselves, and the simulation simply involves resampling from the existing data, while in a parametric case it involves simulation from a suitable parametric model. There is a wide range of possibilities between these extremes, and the book by Davison and Hinkley explores these for many data examples, with the aim of showing how and when resampling methods succeed and why they can fail. He was Editor of Biometrika (2008-2017), Joint Editor of Journal of the Royal Statistical Society, series B (2000-2003), editor of the IMS Lecture Notes Monograph Series (2007), Associate Editor of Biometrika (1987-1999), and Associate Editor of the Brazilian Journal of Probability and Statistics (1987 2006). Currently he on the editorial board of Annual Reviews of Statistics and its Applications. He has served on committees of Royal Statistical Society and of the Institute of Mathematical Statistics. He is an elected Fellow of the American Statistical Assocation and of the Institute of Mathematical Statistics, an elected member of the International Statistical Institute, and a Chartered Statistician. In 2009 he was awarded a laurea honoris causa in Statistical Science by the University of Padova, in 2011 he held a Francqui Chair at Hasselt University, and in 2012 he was Mitchell Lecturer at the University of Glasgow. In 2015 he received the Guy Medal in Silver of the Royal Statistical Society and in 2018 was a Medallion Lecturer of the Institute of Mathematical Statistics.
Martin VetterliMartin Vetterli was appointed president of EPFL by the Federal Council following a selection process conducted by the ETH Board, which unanimously nominated him.
Professor Vetterli was born on 4 October 1957 in Solothurn and received his elementary and secondary education in Neuchâtel Canton. He earned a Bachelor’s degree in electrical engineering from ETH Zurich (ETHZ) in 1981, a Master’s of Science degree from Stanford University in 1982, and a PhD from EPFL in 1986. Professor Vetterli taught at Columbia University as an assistant and then associate professor. He was subsequently named full professor in the Department of Electrical Engineering and Computer Sciences at the University of California at Berkeley before returning to EPFL as a full professor at the age of 38. He has also taught at ETHZ and Stanford University.
Professor Vetterli has earned numerous national and international awards for his research in electrical engineering, computer science and applied mathematics, including the National Latsis Prize in 1996. He is a fellow of both the Association for Computing Machinery and the Institute of Electrical and Electronics Engineers and a member the US National Academy of Engineering. He has published over 170 articles and three reference works.
Professor Vetterli’s work on the theory of wavelets, which are used in signal processing, is considered to be of major importance by his peers, and his areas of expertise, including image and video compression and self-organized communication systems, are central to the development of new information technologies. As the founding director of the National Centre of Competence in Research on Mobile Information and Communication Systems, Professor Vetterli is a staunch advocate of transdisciplinary research.
Professor Vetterli knows EPFL inside and out. An EPFL graduate himself, he began been teaching at the school in 1995, was vice president for International Affairs and then Institutional Affairs from 2004 to 2011, and served as dean of the School of Computer and Communication Sciences in 2011 and 2012. In addition to his role as president of the National Research Council of the Swiss National Science Foundation, a position he held from 2013 to 2016, he heads the EPFL’s Audiovisual Communications Laboratory (LCAV) since 1995.
Professor Vetterli has supported more than 60 students in Switzerland and the United States in their doctoral work and makes a point of following their highly successful careers, whether it is in the academic or business world.
He is the author of some 50 patents, some of which were the basis for start-ups coming out of his lab, such as Dartfish and Illusonic, while others were sold (e.g. Qualcomm) as successful examples of technology transfer. He actively encourages young researchers to market the results of their work.
Roger HerschRoger D. Hersch is professor of Computer Science and head of the Peripheral Systems Laboratory at EPFL. He received his engineering degree from ETHZ in 1975, worked in industry from 1975 to 1980, and obtained his PhD degree from EPFL in 1985. He directed the widely known
Visible Human Web Server project
, which offers a number of services for the visualization of human anatomy.
His current research focuses on color reproduction, spectral color prediction models, moiré imaging, and visual document security. Recent achievements include the PhotoProtect technology, which incorporates text as chromatic differences in order to protect identity photographs (Swiss driving license), microstructure imaging, which is used by railways companies (SNCF, RENFE) and festival organizers (Paleo) to print tickets at home and the band moire imaging technology for the protection of security documents.
Nava SetterNava Setter completed MSc in Civil Engineering in the Technion (Israel) and PhD in Solid State Science in Penn. State University (USA) (1980). After post-doctoral work at the Universities of Oxford (UK) and Geneva (Switzerland), she joined an R&D institute in Haifa (Israel) where she became the head of the Electronic Ceramics Lab (1988). She began her affiliation with EPFL in 1989 as the Director of the Ceramics Laboratory, becoming Full Professor of Materials Science and Engineering in 1992. She had been Head of the Materials Department in the past and more recently has served as the Director of the Doctoral School for Materials.
Research at the Ceramics Laboratory, which Nava Setter directs, concerns the science and technology of functional ceramics focusing on piezoelectric and related materials: ferroelectrics, dielectrics, pyroelectrics and also ferromagnetics. The work includes fundamental and applied research and covers the various scales from the atoms to the final devices. Emphasis is given to micro- and nano-fabrication technology with ceramics and coupled theoretical and experimental studies of the functioning of ferroelectrics.
Her own research interests include ferroelectrics and piezoelectrics: in particular the effects of interfaces, finite-size and domain-wall phenomena, as well as structure-property relations and the pursuit of new applications. The leading thread in her work over the years has been the demonstration of how basic or fundamental concepts in materials - particularly ferroelectrics - can be utilized in a new way and/or in new types of devices. She has published over 450 scientific and technical papers.
Nava Setter is a Fellow of the Swiss Academy of Technical Sciences, the Institute of Electrical and Electronic Engineers (IEEE), and the World Academy of Ceramics. Among the awards she received are the Swiss-Korea Research Award, the ISIF outstanding achievement award, and the Ferroelectrics-IEEE recognition award. In 2010 her research was recognized by the European Union by the award of an ERC Advanced Investigator Grant. Recently she received the IEEE-UFFC Achievement Award (2011),the W.R. Buessem Award(2011), the Robert S. Sosman Award Lecture (American Ceramics Society) (2013), and the American Vacuum Society Recognition for Excellence in Leadership (2013).
Alexander TagantsevALEXANDER K. TAGANTSEV received the B.S. degree from St. Petersburg State University, in 1974, and Ph.D. degree from Ioffe Physico-Technical Institute, St. Petersburg, Russia, in 1982 in solid state physics. Before 1993, he worked in Ioffe Physico-Technical Institute, (1991-1993, head of laboratory), and St. Petersburg State Technical University (1991-1993, professor). He joined the ceramics laboratory of EPFL in 1993 where he was leading ( up to 2016) the section for Modeling and theory of Electroceramics. He is also currently engaged as a principle research fellow at Ioffe institute (St. Petersburg, Russia). Tagantsev is a theoretician of a broad domain of expertise from ferroelectricity and phonon physics to electrodynamics of superconductors and quantum optics. He is the author of key results on the theory of microwave dielectrics loss, dielectric polarization in crystalline materials, and relaxor ferroelectricity. He is also known in the field of ferroelectric thin films for elucidating works on the polarization switching and degradation in these systems. He authored or co-authored more than 300 scientific articles and two monograph (on domains in ferroics and tunable film bulk acoustic wave resonators). In 2007, Prof. Tagantsev was entitled to the Honors for lifetime achievement in the field of integrated ferroelectrics by the International Symposium on Integrated Ferroelectrics.
André SchiperAndré Schiper graduated in Physics from the ETHZ in Zurich in 1973 and received the PhD degree in Computer Science from EPFL in 1980. He has been a professor of computer science at EPFL since 1985, leading the Distributed Systems Laboratory. During the academic year 1992-1993 he was on sabbatical leave at the University of Cornell, Ithaca, New York (working with Ken Birman and Aleta Ricciardi), and in 2004-2005 at the Ecole Polytechnique in Palaiseau, France (working with Bernadette Charron-Bost). His research interests are in the area of dependable distributed systems, middleware support for dependable systems, replication techniques (including for database systems), group communication, distributed transactions, and MANETs (mobile ad-hoc networks).
Prof. Schiper is member of the editorial boards of
Distributed Computing (DC), Springer Verlag - ACM,
Transactions on Dependable and Secure Computing (TDSC), IEEE,
International Journal of Security and Networks (Inderscience).
Dominique BonvinDominique Bonvin is Professor and Director of the Automatic Control Laboratory of EPFL. He received his Diploma in Chemical Engineering from ETH Zürich, and his Ph.D. degree from the University of California, Santa Barbara. He worked in the field of process control for the Sandoz Corporation in Basel and with the Systems Engineering Group of ETH Zürich. He joined the EPFL in 1989, where his current research interests include modeling, control and optimization of dynamic systems. He served as Director of the Automatic Control Laboratory for the periods 1993-97, 2003-2007 and again since 2012, Head of the Mechanical Engineering Department in 1995-97 and Dean of Bachelor and Master Studies at EPFL for the period 2004-2011.
Karl AbererKarl Aberer received his PhD in mathematics in 1991 from the ETH Zürich. From 1991 to 1992 he was postdoctoral fellow at the International Computer Science Institute (ICSI) at the University of California, Berkeley. In 1992, he joined the Integrated Publication and Information Systems institute (IPSI) of GMD in Germany, where he was leading the research division Open Adaptive Information Management Systems. In 2000 he joined EPFL as full professor. Since 2005 he is the director of the Swiss National Research Center for Mobile Information and Communication Systems (
NCCR-MICS, www.mics.ch
). He is member of the editorial boards of VLDB Journal, ACM Transaction on Autonomous and Adaptive Systems and World Wide Web Journal. He has been consulting for the Swiss government in research and science policy as a member of the Swiss Research and Technology Council (
SWTR
) from 2003 - 2011.