Caesium iodideCaesium iodide or cesium iodide (chemical formula CsI) is the ionic compound of caesium and iodine. It is often used as the input phosphor of an tube found in fluoroscopy equipment. Caesium iodide photocathodes are highly efficient at extreme ultraviolet wavelengths. Bulk caesium iodide crystals have the cubic CsCl crystal structure, but the structure type of nanometer-thin CsI films depends on the substrate material – it is CsCl for mica and NaCl for LiF, NaBr and NaCl substrates.
Solid-state nuclear magnetic resonanceSolid-state NMR (ssNMR) spectroscopy is a technique for characterizing atomic level structure in solid materials e.g. powders, single crystals and amorphous samples and tissues using nuclear magnetic resonance (NMR) spectroscopy. The anisotropic part of many spin interactions are present in solid-state NMR, unlike in solution-state NMR where rapid tumbling motion averages out many of the spin interactions.
Chirped pulse amplificationChirped pulse amplification (CPA) is a technique for amplifying an ultrashort laser pulse up to the petawatt level, with the laser pulse being stretched out temporally and spectrally, then amplified, and then compressed again. The stretching and compression uses devices that ensure that the different color components of the pulse travel different distances. CPA for lasers was introduced by Donna Strickland and Gérard Mourou at the University of Rochester in the mid-1980s, work for which they received the Nobel Prize in Physics in 2018.
Nuclear magnetic resonance spectra databaseA nuclear magnetic resonance spectra database is an electronic repository of information concerning Nuclear magnetic resonance (NMR) spectra. Such repositories can be downloaded as self-contained data sets or used online. The form in which the data is stored varies, ranging from line lists that can be graphically displayed to raw free induction decay (FID) data. Data is usually annotated in a way that correlates the spectral data with the related molecular structure. The form in which most NMR is described in literature papers.
ChromophoreA chromophore is the part of a molecule responsible for its color. The color that is seen by our eyes is the one not absorbed by the reflecting object within a certain wavelength spectrum of visible light. The chromophore is a region in the molecule where the energy difference between two separate molecular orbitals falls within the range of the visible spectrum (or in informal contexts, the spectrum under scrutiny). Visible light that hits the chromophore can thus be absorbed by exciting an electron from its ground state into an excited state.
Particle radiationParticle radiation is the radiation of energy by means of fast-moving subatomic particles. Particle radiation is referred to as a particle beam if the particles are all moving in the same direction, similar to a light beam. Due to the wave–particle duality, all moving particles also have wave character. Higher energy particles more easily exhibit particle characteristics, while lower energy particles more easily exhibit wave characteristics.
Coherent controlCoherent control is a quantum mechanics-based method for controlling dynamic processes by light. The basic principle is to control quantum interference phenomena, typically by shaping the phase of laser pulses. The basic ideas have proliferated, finding vast application in spectroscopy mass spectra, quantum information processing, laser cooling, ultracold physics and more. The initial idea was to control the outcome of chemical reactions.
Atomic absorption spectroscopyAtomic absorption spectroscopy (AAS) and atomic emission spectroscopy (AES) is a spectroanalytical procedure for the quantitative determination of chemical elements by free atoms in the gaseous state. Atomic absorption spectroscopy is based on absorption of light by free metallic ions. In analytical chemistry the technique is used for determining the concentration of a particular element (the analyte) in a sample to be analyzed.
Physics of magnetic resonance imagingThe physics of magnetic resonance imaging (MRI) concerns fundamental physical considerations of MRI techniques and technological aspects of MRI devices. MRI is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels among others.
Raman amplificationRaman amplification ˈrɑːmən is based on the stimulated Raman scattering (SRS) phenomenon, when a lower frequency 'signal' photon induces the inelastic scattering of a higher-frequency 'pump' photon in an optical medium in the nonlinear regime. As a result of this, another 'signal' photon is produced, with the surplus energy resonantly passed to the vibrational states of the medium. This process, as with other stimulated emission processes, allows all-optical amplification.