Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Idiap has made a submission to the conversational telephony speech (CTS) challenge of the NIST SRE 2019. The submission consists of six speaker verification (SV) systems: four extended TDNN (E-TDNN) and two TDNN x-vector systems. Employment of various trai ...
In i-vector based speaker recognition systems, back-end classifiers are trained to factor out nuisance information and retain only the speaker identity. As a result, variabilities arising due to gender, language and accent ( among many others) are suppress ...
Natural language processing techniques are dependent upon punctuation to work well. When their input is taken from speech recognition, it is necessary to reconstruct the punctuation; in particular sentence boundaries. We define a range of features from low ...
In hidden Markov model (HMM) based automatic speech recognition (ASR) system, modeling the statistical relationship between the acoustic speech signal and the HMM states that represent linguistically motivated subword units such as phonemes is a crucial st ...
The concept of adaptivity is crucial in enterprise software systems with a large user base. Adaptive user interfaces (AUI) is an emerging research area that enables customized user experience based on user activities. Most of the existing studies that are ...
This thesis deals with exploiting the low-dimensional multi-subspace structure of speech towards the goal of improving acoustic modeling for automatic speech recognition (ASR). Leveraging the parsimonious hierarchical nature of speech, we hypothesize that ...
Modeling directly raw waveforms through neural networks for speech processing is gaining more and more attention. Despite its varied success, a question that remains is: what kind of information are such neural networks capturing or learning for different ...
In this paper, we introduce a novel approach for Language Identification (LID). Two commonly used state-of-the-art methods based on UBM/GMM I-vector technique, combined with a back-end classifier, are first evaluated. The differential factor between these ...
Children speech recognition based on short-term spectral features is a challenging task. One of the reasons is that children speech has high fundamental frequency that is comparable to formant frequency values. Furthermore, as children grow, their vocal ap ...
Natural language processing techniques are dependent upon punctuation to work well. When their input is taken from speech recognition, it is necessary to reconstruct the punctuation; in particular sentence boundaries. We define a range of features from low ...