Moment-generating functionIn probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution. Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the moment-generating functions of distributions defined by the weighted sums of random variables.
Wilcoxon signed-rank testThe Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used either to test the location of a population based on a sample of data, or to compare the locations of two populations using two matched samples. The one-sample version serves a purpose similar to that of the one-sample Student's t-test. For two matched samples, it is a paired difference test like the paired Student's t-test (also known as the "t-test for matched pairs" or "t-test for dependent samples").
Parametric familyIn mathematics and its applications, a parametric family or a parameterized family is a family of objects (a set of related objects) whose differences depend only on the chosen values for a set of parameters. Common examples are parametrized (families of) functions, probability distributions, curves, shapes, etc. Statistical model For example, the probability density function fX of a random variable X may depend on a parameter θ. In that case, the function may be denoted to indicate the dependence on the parameter θ.
Prospect theoryProspect theory is a theory of behavioral economics and behavioral finance that was developed by Daniel Kahneman and Amos Tversky in 1979. The theory was cited in the decision to award Kahneman the 2002 Nobel Memorial Prize in Economics. Based on results from controlled studies, it describes how individuals assess their loss and gain perspectives in an asymmetric manner (see loss aversion). For example, for some individuals, the pain from losing 1,000couldonlybecompensatedbythepleasureofearning2,000. Erlang distributionThe Erlang distribution is a two-parameter family of continuous probability distributions with support . The two parameters are: a positive integer the "shape", and a positive real number the "rate". The "scale", the reciprocal of the rate, is sometimes used instead. The Erlang distribution is the distribution of a sum of independent exponential variables with mean each. Equivalently, it is the distribution of the time until the kth event of a Poisson process with a rate of .
Bernoulli distributionIn probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability . Less formally, it can be thought of as a model for the set of possible outcomes of any single experiment that asks a yes–no question. Such questions lead to outcomes that are boolean-valued: a single bit whose value is success/yes/true/one with probability p and failure/no/false/zero with probability q.
Framing effect (psychology)The framing effect is a cognitive bias where people decide between options based on whether the options are presented with positive or negative connotations. Individuals have a tendency to make risk-avoidant choices when options are positively framed, while selecting more loss-avoidant options when presented with a negative frame. In studies of the bias, options are presented in terms of the probability of either losses or gains. While differently expressed, the options described are in effect identical.
Beta distributionIn probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution. The beta distribution has been applied to model the behavior of random variables limited to intervals of finite length in a wide variety of disciplines.
Gamma distributionIn probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use: With a shape parameter and a scale parameter . With a shape parameter and an inverse scale parameter , called a rate parameter. In each of these forms, both parameters are positive real numbers.
Continuous mapping theoremIn probability theory, the continuous mapping theorem states that continuous functions preserve limits even if their arguments are sequences of random variables. A continuous function, in Heine’s definition, is such a function that maps convergent sequences into convergent sequences: if xn → x then g(xn) → g(x). The continuous mapping theorem states that this will also be true if we replace the deterministic sequence {xn} with a sequence of random variables {Xn}, and replace the standard notion of convergence of real numbers “→” with one of the types of convergence of random variables.