Cantor's diagonal argumentIn set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers. Such sets are now known as uncountable sets, and the size of infinite sets is now treated by the theory of cardinal numbers which Cantor began.
FractionA fraction (from fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A common, vulgar, or simple fraction (examples: and ) consists of an integer numerator, displayed above a line (or before a slash like ), and a non-zero integer denominator, displayed below (or after) that line.
Binary numberA binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" (one). The base-2 numeral system is a positional notation with a radix of 2. Each digit is referred to as a bit, or binary digit. Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used by almost all modern computers and computer-based devices, as a preferred system of use, over various other human techniques of communication, because of the simplicity of the language and the noise immunity in physical implementation.
0.999...In mathematics, 0.999... (also written as 0. or 0.) denotes the repeating decimal consisting of an unending sequence of 9s after the decimal point. This repeating decimal represents the smallest number no less than every decimal number in the sequence (0.9, 0.99, 0.999, ...); that is, the supremum of this sequence. This number is equal to1. In other words, "0.999..." is not "almost exactly" or "very, very nearly but not quite" 1 - rather, "0.999..." and "1" represent the same number.
Elliptic boundary value problemIn mathematics, an elliptic boundary value problem is a special kind of boundary value problem which can be thought of as the stable state of an evolution problem. For example, the Dirichlet problem for the Laplacian gives the eventual distribution of heat in a room several hours after the heating is turned on. Differential equations describe a large class of natural phenomena, from the heat equation describing the evolution of heat in (for instance) a metal plate, to the Navier-Stokes equation describing the movement of fluids, including Einstein's equations describing the physical universe in a relativistic way.
Proper mapIn mathematics, a function between topological spaces is called proper if s of compact subsets are compact. In algebraic geometry, the analogous concept is called a proper morphism. There are several competing definitions of a "proper function". Some authors call a function between two topological spaces if the of every compact set in is compact in Other authors call a map if it is continuous and ; that is if it is a continuous closed map and the preimage of every point in is compact.
Numerical methodIn numerical analysis, a numerical method is a mathematical tool designed to solve numerical problems. The implementation of a numerical method with an appropriate convergence check in a programming language is called a numerical algorithm. Let be a well-posed problem, i.e. is a real or complex functional relationship, defined on the cross-product of an input data set and an output data set , such that exists a locally lipschitz function called resolvent, which has the property that for every root of , .
Counting measureIn mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinity if the subset is infinite. The counting measure can be defined on any measurable space (that is, any set along with a sigma-algebra) but is mostly used on countable sets. In formal notation, we can turn any set into a measurable space by taking the power set of as the sigma-algebra that is, all subsets of are measurable sets.
Fractional calculusFractional calculus is a branch of mathematical analysis that studies the several different possibilities of defining real number powers or complex number powers of the differentiation operator and of the integration operator and developing a calculus for such operators generalizing the classical one.
Local coordinatesLocal coordinates are the ones used in a local coordinate system or a local coordinate space. Simple examples: Houses. In order to work in a house construction, the measurements are referred to a control arbitrary point that will allow to check it: stick/sticks on the ground, steel bar, nails... Addresses. Using house numbers to locate a house on a street; the street is a local coordinate system within a larger system composed of city townships, states, countries, postal codes, etc. Local systems exist for convenience.