Escape velocityIn celestial mechanics, escape velocity or escape speed is the minimum speed needed for a free, non-propelled object to escape from the gravitational influence of a primary body, thus reaching an infinite distance from it. It is typically stated as an ideal speed, ignoring atmospheric friction. Although the term "escape velocity" is common, it is more accurately described as a speed than a velocity because it is independent of direction.
ApsisAn apsis (; ˈæpsɪˌdiːz ) is the farthest or nearest point in the orbit of a planetary body about its primary body. The line of apsides is the line connecting the two extreme values. For example, for orbits about the Sun the apsides are called aphelion (farthest) and perihelion (nearest). The Moon's two apsides are the farthest point, apogee, and the nearest point, perigee, of its orbit around the host Earth. The Earth's two apsides are the farthest point, aphelion, and the nearest point, perihelion, of its orbit around the host Sun.
Circular orbitA circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle. In this case, not only the distance, but also the speed, angular speed, potential and kinetic energy are constant. There is no periapsis or apoapsis. This orbit has no radial version. Listed below is a circular orbit in astrodynamics or celestial mechanics under standard assumptions. Here the centripetal force is the gravitational force, and the axis mentioned above is the line through the center of the central mass perpendicular to the orbital plane.
Kepler's laws of planetary motionIn astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits and epicycles with elliptical trajectories, and explaining how planetary velocities vary. The three laws state that: The orbit of a planet is an ellipse with the Sun at one of the two foci. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
Standard gravitational parameterIn celestial mechanics, the standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of the bodies. For two bodies the parameter may be expressed as G(m1+m2), or as GM when one body is much larger than the other: For several objects in the Solar System, the value of μ is known to greater accuracy than either G or M. The SI units of the standard gravitational parameter are m3 s−2. However, units of km3 s−2 are frequently used in the scientific literature and in spacecraft navigation.
Two-body problemIn classical mechanics, the two-body problem is to predict the motion of two massive objects which are abstractly viewed as point particles. The problem assumes that the two objects interact only with one another; the only force affecting each object arises from the other one, and all other objects are ignored. The most prominent case of the classical two-body problem is the gravitational case (see also Kepler problem), arising in astronomy for predicting the orbits (or escapes from orbit) of objects such as satellites, planets, and stars.
Vis-viva equationIn astrodynamics, the vis-viva equation, also referred to as orbital-energy-invariance law or Burgas formula, is one of the equations that model the motion of orbiting bodies. It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.
Celestial mechanicsCelestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to produce ephemeris data. Modern analytic celestial mechanics started with Isaac Newton's Principia of 1687. The name "celestial mechanics" is more recent than that. Newton wrote that the field should be called "rational mechanics.
Radial trajectoryIn astrodynamics and celestial mechanics a radial trajectory is a Kepler orbit with zero angular momentum. Two objects in a radial trajectory move directly towards or away from each other in a straight line. There are three types of radial trajectories (orbits). Radial elliptic trajectory: an orbit corresponding to the part of a degenerate ellipse from the moment the bodies touch each other and move away from each other until they touch each other again. The relative speed of the two objects is less than the escape velocity.
OrbitIn celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory.