Mihai Adrian IonescuAdrian M. Ionescu is Full Professor at the Swiss Federal Institute of Technology, Lausanne, Switzerland. He received the B.S./M.S. and Ph.D. degrees from the Polytechnic Institute of Bucharest, Romania and the National Polytechnic Institute of Grenoble, France, in 1989 and 1997, respectively. He has held staff and/or visiting positions at LETI-CEA, Grenoble, France and INP Grenoble, France and Stanford University, USA, in 1998 and 1999. Dr. Ionescu has published more than 600 articles in international journals and conferences. He received many Best Paper Awards in international conferences, the Annual Award of the Technical Section of the Romanian Academy of Sciences in 1994 and the Blondel Medal in 2009 for contributions to the progress in engineering sciences in the domain of electronics. He is the 2013 recipient of the IBM Faculty Award in Engineering. He served the IEDM and VLSI conference technical committees and was the Technical Program Committee (Co)Chair of ESSDERC in 2006 and 2013. He is a member of the SATW. He is director of the Laboratory of Micro/Nanoelectronic Devices (NANOLAB).
Martinus GijsMartin A.M. Gijs received his degree in physics in 1981 from the Katholieke Universiteit Leuven, Belgium and his Ph.D. degree in physics at the same university in 1986. He joined the Philips Research Laboratories in Eindhoven, The Netherlands, in 1987. Subsequently, he has worked there on micro-and nano-fabrication processes of high critical temperature superconducting Josephson and tunnel junctions, the microfabrication of microstructures in magnetic multilayers showing the giant magnetoresistance effect, the design and realisation of miniaturised motors for hard disk applications and the design and realisation of planar transformers for miniaturised power applications. He joined EPFL in 1997. His present interests are in developing technologies for novel magnetic devices, new microfabrication technologies for microsystems fabrication in general and the development and use of microsystems technologies for microfluidic and biomedical applications in particular.
Christophe BallifChristophe Ballif is director of the Phototovoltaics and Thin Film Electronics Laboratoryb) (PV-Lab at the institute of microengineering (IMT) in Neuchâtel (part of the EPFL since 2009). The lab focus is on the science and technology of high efficiency heterojunction crystalline cells,so-called passivating contacts for solar cells, multi-junction solar cells include novel generation Perovskite on innovative optical high speed detector and on various macroelectronics application. It also deals with energy management with a focus on integration of solar electricity into the energy system. The PV-Lab has strongly contributed to technology transfer and industrialization of novel devices and full technology with numerous companies. Christophe Ballif graduated as a physicist from the EPFL in 1994, where he also obtained in 1998 his Phd degree working on novel PV materials. He accomplished his postdoctoral research at NREL (Golden, US) on compound semiconductor solar cells (CIGS and CdTe). He worked then at the Fraunhofer ISE (Ge) on crystalline silicon photovoltaics (monocrystalline and multi-crystalline) until 2003 and then at the EMPA in Thun (CH) before becoming full professor at the University of Neuchâtel IMT in 2004, taking over the chair of Prof. A. Shah. Since 2013, C.Ballif is also the director of the new CSEM PV-Center, also located in Neuchâtel. The CSEM PV-Center is focussing more on industrialisation and technology transfer in the field of solar energy, including solar electricity management and storage. At the core of the CSEM PV-center activities lies several "pilot lines" for various kinds of solar cells manufacturing, with a focus coating technologies, wet chemistry processes for crystalline silicon, metalisation techniques for solar cells, and a platform for developing "ideal packaging solutions and polymers" for PV modules. In addition, joined facitilites between CSEM and EPFL of over 800 m2 are available for modules manufacturing, measuring and accelerated aging. CSEM PV-center has also full team dedicated to storage and energy systems and operates a joined center with BFH in Biel for research on electrochemical storage. He (co-) authored over 500 journal and technical papers, as well as several patents. He is an elected member of the SATW, member of the scientific council of the Swiss AEE, and member of the board of the EPFL Energy center. In 2016, he recieved the Becquerel prize for his contributions to the field of high efficiency photovoltaics.
François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Lyesse LalouiDirector, EPFL Soil Mechanics LaboratoryDirector, EPFL Civil Engineering SectionEditor in Chief, ElsevierMember of the Swiss Academy of Engineering SciencesFounding Partner, Geoeg & MeduSoilActive in academic research in the following institutions: Lausanne, EPFL, Durham, Duke University, Nanjing, Hohai UniversityProfessor Lyesse Laloui teaches at EPFL, where he directs the Soil Mechanics Laboratory as well as the Civil Engineering Section. He is a founding partner of the international engineering company Geoeg, and the start-up MeduSoil. In addition, he is an adjunct professor at Duke University, USA and an advisory professor at Hohai University, China as well as honorary director of the International Joint Research Center for Energy Geotechnics in China.He is the recipient of an Advance ERC grant for his BIO-mediated GEO-material Strengthening project. Editor in Chief of the Elsevier Geomechanics for Energy and the Environment journal, he is a leading scientist in the field of geomechanics and geo-energy. He has written and edited 13 books and published over 320 peer reviewed papers; his work is cited more than 6000 times with an h-index of 39 (Scopus). Two of his papers are among the top 1% in the academic field of Engineering. He has given keynote and invited lectures at more than 40 leading international conferences. He has received several international awards (IACMAG, RM Quigley, Roberval) and delivered honorary lectures (Vardoulakis, Minnesota; G.A. Leonards, Purdue; Kersten, Minnesota). He recently acted as the Chair of the international evaluation panel of Civil and Geological Engineering R&D Units of Portugal.Nov. 2019 For further information visit www.epfl.ch/labs/lms/ ; geoeg.net ; medusoil.com Anton SchleissProf. Dr. Anton J. Schleiss graduated in Civil Engineering from the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, in 1978. After joining the Laboratory of Hydraulic, Hydrology and Glaciology at ETH as a research associate and senior assistant, he obtained a Doctorate of Technical Sciences on the topic of pressure tunnel design in 1986. After that he worked for 11 years for Electrowatt Engineering Ltd. (now Pöyry) in Zurich and was involved in the design of many hydropower projects around the world as an expert on hydraulic engineering and underground waterways. Until 1996 he was Head of the Hydraulic Structures Section in the Hydropower Department at Electrowatt. In 1997, he was nominated full professor and became Director of the Laboratory of Hydraulic Constructions (LCH) in the Civil Engineering Department of the Swiss Federal Institute of Technology Lausanne (EPFL). The LCH activities comprise education, research and services in the field of both fundamental and applied hydraulics and design of hydraulic structures and schemes. The research focuses on the interaction between water, sediment-rock, air and hydraulic structures as well as associated environmental issues and involves both numerical and physical modeling of water infrastructures. In May 2018, he became Honorary Professor at EPFL. More than 50 PhD and Postdoc research projects have been carried out under his guidance. From 1999 to 2009 he was Director of the Master of Advanced Studies (MAS) in Water Resources Management and Hydraulic Engineering held in Lausanne in collaboration with ETH Zurich and the universities of Innsbruck (Austria), Munich (Germany), Grenoble (France) and Liège (Belgium). From 2006 to 2012 he was the Head of the Civil Engineering program of EPFL and chairman of the Swiss Committee on Dams (SwissCOLD). In 2006, he obtained the ASCE Karl Emil Hilgard Hydraulic Price as well as the J. C. Stevens Award. He was listed in 2011 among the 20 international personalities that “have made the biggest difference to the sector Water Power & Dam Construction over the last 10 years”. Between 2014 and 2017 he was Council member of International Association for Hydro-Environment Engineering and Research (IAHR) and he was chair of the Europe Regional Division of IAHR until 2016. For his outstanding contributions to advance the art and science of hydraulic structures engineering he obtained in 2015 the ASCE-EWRI Hydraulic Structures Medal. The French Hydro Society (SHF) awarded him with the Grand Prix SHF 2018. After having served as vice-president between 2012 and 2015 he was president of the International Commission on Large Dams (ICOLD) from 2015 to 2018. On behalf of ICOLD he his the coordinator of the EU Horizon 2020 project "Hydropower Europe". With more than 40 years of experience he is regularly involved as a consultant and expert in large water infrastructures projects including hydropower and dams all over the world. Awards (besides those mentioned above): ASCE-Journal of Hydraulic Engineering Outstanding Reviewer Recognition 2013 ASCE-EWRI-Journal of Hydraulic Engineering 2014 Best Technical Note