Category

Topics in condensed matter physics

Related publications (1,000)

Realization of an atomic quantum Hall system in four dimensions

Qi Liu

Modern condensed matter physics relies on the concept of topology to classify matter, from quantum Hall systems to topological insulators. Engineered systems, benefiting from synthetic dimensions, can potentially give access to topological states predicted ...
Amer Assoc Advancement Science2024

A Cavity-Microscope for Quantum Simulations with Locally-Controllable All-to-All Interactions

Nick Jacob Sauerwein

This thesis presents the development, construction, and benchmark of an experimental platform that combines cold fermionic 6Li atoms with locally controllable light-matter interactions. To enable local control, a new device, the cavity-microscope, was crea ...
EPFL2024

Frustrated magnets in the limit of infinite dimensions: Dynamics and disorder-free glass transition

Achille Mauri

We study the statistical mechanics and the equilibrium dynamics of a system of classical Heisenberg spins with frustrated interactions on a d -dimensional simple hypercubic lattice, in the limit of infinite dimensionality d -> infinity . In the analysis we ...
Amer Physical Soc2024

Field-controlled multicritical behavior and emergent universality in fully frustrated quantum magnets

Bruce Normand

Phase transitions in condensed matter are a source of exotic emergent properties. We study the fully frustrated bilayer Heisenberg antiferromagnet to demonstrate that an applied magnetic field creates a previously unknown emergent criticality. The quantum ...
Berlin2024

Topological photonic transport in disordered scattering networks

Zhechen Zhang

This Ph.D. thesis unveils the unique topological phenomena occurring in such networks, focusing on the intricate interplay between their Floquet topology, the presence of disorder, and their unitary scattering at microscopic and macroscopic scales. Using t ...
EPFL2024

Anomalous‐Chern Steering of Topological Nonreciprocal Guided Waves

Romain Christophe Rémy Fleury, Haoye Qin, Zhechen Zhang, Qiaolu Chen

Nonreciprocal topological edge states based on external magnetic bias have been regarded as the last resort for genuine unidirectional wave transport, showing superior robustness over topological states with preserved time-reversal symmetry. However, fast ...
2024

Exciton migration in two-dimensional materials

Excitons play an essential role in the optical response of two-dimensional materials. These are bound states showing up in the band gaps of many-body systems and are conceived as quasiparticles formed by an electron and a hole. By performing real-time simu ...
Nature Portfolio2024

Nonlinear optical diode effect in a magnetic Weyl semimetal

Philip Johannes Walter Moll, Chunyu Guo, Hao Yang

Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically co ...
Nature Portfolio2024

Spin-Reorientation-Driven Linear Magnetoelectric Effect in Topological Antiferromagnet Cu3TeO6

Helmuth Berger

The search for new materials for energy -efficient electronic devices has gained unprecedented importance. Among the various classes of magnetic materials driving this search are antiferromagnets, magnetoelectrics, and systems with topological spin excitat ...
Amer Physical Soc2024

Weyl metallic state induced by helical magnetic order

Henrik Moodysson Rønnow, Jan Hugo Dil, Ivica Zivkovic, Jian Rui Soh, Xupeng Yang

In the rapidly expanding field of topological materials there is growing interest in systems whose topological electronic band features can be induced or controlled by magnetism. Magnetic Weyl semimetals, which contain linear band crossings near the Fermi ...
Berlin2024

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.