EE-613: Machine Learning for EngineersThe objective of this course is to give an overview of machine learning techniques used for real-world applications, and to teach how to implement and use them in practice. Laboratories will be done i
MATH-602: Inference on graphsThe class covers topics related to statistical inference and algorithms on graphs: basic random graphs concepts, thresholds, subgraph containment (planted clique), connectivity, broadcasting on trees,
CS-233(a): Introduction to machine learning (BA3)Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
MGT-529: Data science and machine learning IIThis class discusses advanced data science and machine learning (ML) topics: Recommender Systems, Graph Analytics, and Deep Learning, Big Data, Data Clouds, APIs, Clustering. The course uses the Wol
MATH-435: Bayesian ComputationThis course aims at giving a broad overview of Bayesian inference, highlighting how the basic Bayesian paradigm proceeds, and the various methods that can be used to deal with the computational issues