Summary
In the science of biology, a mechanism is a system of causally interacting parts and processes that produce one or more effects. Scientists explain phenomena by describing mechanisms that could produce the phenomena. For example, natural selection is a mechanism of biological evolution; other mechanisms of evolution include genetic drift, mutation, and gene flow. In ecology, mechanisms such as predation and host-parasite interactions produce change in ecological systems. In practice, no description of a mechanism is ever complete because not all details of the parts and processes of a mechanism are fully known. For example, natural selection is a mechanism of evolution that includes countless, inter-individual interactions with other individuals, components, and processes of the environment in which natural selection operates. Many characterizations/definitions of mechanisms in the philosophy of science/biology have been provided in the past decades. For example, one influential characterization of neuro- and molecular biological mechanisms by Peter K. Machamer, Lindley Darden and Carl Craver is as follows: mechanisms are entities and activities organized such that they are productive of regular changes from start to termination conditions. Other characterizations have been proposed by Stuart Glennan (1996, 2002), who articulates an interactionist account of mechanisms, and William Bechtel (1993, 2006), who emphasizes parts and operations. The characterization by Machemer et al. is as follows: mechanisms are entities and activities organized such that they are productive of changes from start conditions to termination conditions. There are three distinguishable aspects of this characterization: Ontic aspect The ontic constituency of biological mechanisms includes entities and activities. Thus, this conception postulates a dualistic ontology of mechanisms, where entities are substantial components, and activities are reified components of mechanisms. This augmented ontology increases the explanatory power of this conception.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (9)
Mechanism (biology)
In the science of biology, a mechanism is a system of causally interacting parts and processes that produce one or more effects. Scientists explain phenomena by describing mechanisms that could produce the phenomena. For example, natural selection is a mechanism of biological evolution; other mechanisms of evolution include genetic drift, mutation, and gene flow. In ecology, mechanisms such as predation and host-parasite interactions produce change in ecological systems.
Four causes
The four causes or four explanations are, in Aristotelian thought, four fundamental types of answer to the question "why?", in analysis of change or movement in nature: the material, the formal, the efficient, and the final. Aristotle wrote that "we do not have knowledge of a thing until we have grasped its why, that is to say, its cause." While there are cases in which classifying a "cause" is difficult, or in which "causes" might merge, Aristotle held that his four "causes" provided an analytical scheme of general applicability.
Physiology
Physiology (ˌfɪziˈɒlədʒi; ) is the scientific study of functions and mechanisms in a living system. As a sub-discipline of biology, physiology focuses on how organisms, organ systems, individual organs, cells, and biomolecules carry out the chemical and physical functions in a living system. According to the classes of organisms, the field can be divided into medical physiology, animal physiology, plant physiology, cell physiology, and comparative physiology.
Show more