François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Martin VetterliMartin Vetterli was appointed president of EPFL by the Federal Council following a selection process conducted by the ETH Board, which unanimously nominated him.
Professor Vetterli was born on 4 October 1957 in Solothurn and received his elementary and secondary education in Neuchâtel Canton. He earned a Bachelor’s degree in electrical engineering from ETH Zurich (ETHZ) in 1981, a Master’s of Science degree from Stanford University in 1982, and a PhD from EPFL in 1986. Professor Vetterli taught at Columbia University as an assistant and then associate professor. He was subsequently named full professor in the Department of Electrical Engineering and Computer Sciences at the University of California at Berkeley before returning to EPFL as a full professor at the age of 38. He has also taught at ETHZ and Stanford University.
Professor Vetterli has earned numerous national and international awards for his research in electrical engineering, computer science and applied mathematics, including the National Latsis Prize in 1996. He is a fellow of both the Association for Computing Machinery and the Institute of Electrical and Electronics Engineers and a member the US National Academy of Engineering. He has published over 170 articles and three reference works.
Professor Vetterli’s work on the theory of wavelets, which are used in signal processing, is considered to be of major importance by his peers, and his areas of expertise, including image and video compression and self-organized communication systems, are central to the development of new information technologies. As the founding director of the National Centre of Competence in Research on Mobile Information and Communication Systems, Professor Vetterli is a staunch advocate of transdisciplinary research.
Professor Vetterli knows EPFL inside and out. An EPFL graduate himself, he began been teaching at the school in 1995, was vice president for International Affairs and then Institutional Affairs from 2004 to 2011, and served as dean of the School of Computer and Communication Sciences in 2011 and 2012. In addition to his role as president of the National Research Council of the Swiss National Science Foundation, a position he held from 2013 to 2016, he heads the EPFL’s Audiovisual Communications Laboratory (LCAV) since 1995.
Professor Vetterli has supported more than 60 students in Switzerland and the United States in their doctoral work and makes a point of following their highly successful careers, whether it is in the academic or business world.
He is the author of some 50 patents, some of which were the basis for start-ups coming out of his lab, such as Dartfish and Illusonic, while others were sold (e.g. Qualcomm) as successful examples of technology transfer. He actively encourages young researchers to market the results of their work.
Daniel FavratDaniel Favrat got his Master degree in Mechanical Engineering from EPFL in 1972 and his PhD also from EPFL. He then spent 12 years in industrial research laboratories in Canada (Esso Canada) and Switzerland (CERAC: Centre Européen de Recherche Atlas Copco). From 1988 to 2013, he was full professor and director of the Industrial Energy Systems Laboratory (LENI) at EPFL. During that period he was successively director of the Institute of Energy and director of the Institute of Mechanical Engineering. From August 2013 he works at EPFL Energy Center first as director ad interim and now as director technologies.
His research fields include systemic analyses accounting for energy, environment and economics (so-called environomic optimisation) and advanced conversion systems for a more rational use of energy (heat pumps &ORC, engines, fuel cells, power plants, etc).
He is a member of the Swiss Academy of Engineering Sciences and of the National Academy of Technology in France. He has also an active participation in the World Federation of Engineering Organizations (WFEO) as a member of the executive committee and vice-chair of the energy committee. He is associate editor of the journal "Energy" and of International Journal of thermodynamics. He is the author of several books on thermodynamics and energy systems analysis. He is also affiliate professor at the Royal Institute of Technology (KTH) in Stockholm.
Philippe ThalmannPhilippe Thalmann was born in Lausanne in 1963. He graduated in Economics from the University of Lausanne in 1984, where he earned a postgraduate diploma in Economics in 1986. Mr. Thalmann entered the doctoral program in Economics of Harvard University (Cambridge, U.S.A.) in 1986, which he completed with a Ph.D. in 1990. His dissertation is entitled: "Essays in the Economics of Government Revenues and Spending". Returning to Switzerland, he was hired as an assistant professor first at the University of Geneva (teachings in Public Economics), then at the University of Lausanne (teachings in Econometrics and Introductory Economics). Since 1994, Mr. Thalmann is associate professor of Economics as the Swiss Federal Institute of Technology at Lausanne.
Jean-Yves Le BoudecJean-Yves Le Boudec is full professor at EPFL and fellow of the IEEE. He graduated from Ecole Normale Superieure de Saint-Cloud, Paris, where he obtained the Agregation in Mathematics in 1980 (rank 4) and received his doctorate in 1984 from the University of Rennes, France. From 1984 to 1987 he was with INSA/IRISA, Rennes. In 1987 he joined Bell Northern Research, Ottawa, Canada, as a member of scientific staff in the Network and Product Traffic Design Department. In 1988, he joined the IBM Zurich Research Laboratory where he was manager of the Customer Premises Network Department. In 1994 he joined EPFL as associate professor. His interests are in the performance and architecture of communication systems. In 1984, he developed analytical models of multiprocessor, multiple bus computers. In 1990 he invented the concept called "MAC emulation" which later became the ATM forum LAN emulation project, and developed the first ATM control point based on OSPF. He also launched public domain software for the interworking of ATM and TCP/IP under Linux. He proposed in 1998 the first solution to the failure propagation that arises from common infrastructures in the Internet. He contributed to network calculus, a recent set of developments that forms a foundation to many traffic control concepts in the internet. He earned the Infocom 2005 Best Paper award, with Milan Vojnovic, for elucidating the perfect simulation and stationarity of mobility models, the 2008 IEEE Communications Society William R. Bennett Prize in the Field of Communications Networking, with Bozidar Radunovic, for the analysis of max-min fairness and the 2009 ACM Sigmetrics Best Paper Award, with Augustin Chaintreau and Nikodin Ristanovic, for the mean field analysis of the age of information in gossiping protocols. He is or has been on the program committee or editorial board of many conferences and journals, including Sigcomm, Sigmetrics, Infocom, Performance Evaluation and ACM/IEEE Transactions on Networking. He co-authored the book "Network Calculus" (2001) with Patrick Thiran and is the author of the book "Performance Evaluation of Computer and Communication Systems" (2010).
Maryam KamgarpourMaryam Kamgarpour holds a Doctor of Philosophy in Engineering from the University of California, Berkeley and a Bachelor of Applied Science from University of Waterloo, Canada. Her research is on safe decision-making and control under uncertainty, game theory and mechanism design, mixed integer and stochastic optimization and control. Her theoretical research is motivated by control challenges arising in intelligent transportation networks, robotics, power grid systems and healthcare. She is the recipient of NASA High Potential Individual Award, NASA Excellence in Publication Award, and the European Union (ERC) Starting Grant.
Ralf SeifertRalf W. Seifert is Professor of Technology & Operations Management (TOM) at the College of Management of Technology (CDM) at Ecole Polytechnique Fédérale de Lausanne (EPFL) since 2003. His primary research and teaching interests relate to operations management, supply chain strategy and technology network management. He is also active in industry analysis, international project work and new venture formation.
Based on his work with companies, Professor Seifert has co-authored more than 30 case studies covering different industries. These efforts have been recognized by multiple international case awards granted by EFMD in 2018, 2012, 2009 and 2003, ECCH in 2011 and 2006, as well as POMS in 2004. He continues to actively research issues of supply chain strategy, supply chain finance and technology management and has more than 70 articles and international conference presentations to his credit. In addition, he co-authored two books: one focused on strategic supply chain management and another one concerning start-up challenges of technology ventures.
In parallel to his appointment at EPFL, he continues to serve a position at IMD, were he has been appointed Professor of Operations Management in 2000. Prior to joining IMD, Professor Seifert studied and worked in Germany, Japan and the US. He earned PhD and MS degrees in Management Science at Stanford University, a Diplom Ingenieur degree in Mechanical Engineering at the Karlsruhe Institute of Technology (KIT) and a Master's degree in Integrated Manufacturing Systems Engineering from North Carolina State University. While in the US, he consulted for Hewlett-Packard and served as Teaching and Research Assistant at Stanford University. In Germany he worked for Booz & Company, McKinsey & Company and Freudenberg & Co. In addition, he spent one year as a Visiting Scholar in Operations Research at Waseda University in Tokyo.