Orthogonal polynomialsIn mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre polynomials and the Jacobi polynomials. The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases.
Classical orthogonal polynomialsIn mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials: the Hermite polynomials, Laguerre polynomials, Jacobi polynomials (including as a special case the Gegenbauer polynomials, Chebyshev polynomials, and Legendre polynomials). They have many important applications in such areas as mathematical physics (in particular, the theory of random matrices), approximation theory, numerical analysis, and many others.
Legendre polynomialsIn mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a vast number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications. Closely related to the Legendre polynomials are associated Legendre polynomials, Legendre functions, Legendre functions of the second kind, and associated Legendre functions.
Hermite polynomialsIn mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence. The polynomials arise in: signal processing as Hermitian wavelets for wavelet transform analysis probability, such as the Edgeworth series, as well as in connection with Brownian motion; combinatorics, as an example of an Appell sequence, obeying the umbral calculus; numerical analysis as Gaussian quadrature; physics, where they give rise to the eigenstates of the quantum harmonic oscillator; and they also occur in some cases of the heat equation (when the term is present); systems theory in connection with nonlinear operations on Gaussian noise.