Operational semanticsOperational semantics is a category of formal programming language semantics in which certain desired properties of a program, such as correctness, safety or security, are verified by constructing proofs from logical statements about its execution and procedures, rather than by attaching mathematical meanings to its terms (denotational semantics).
F* (programming language)F* (pronounced F star) is a functional programming language inspired by ML and aimed at program verification. Its type system includes dependent types, monadic effects, and refinement types. This allows expressing precise specifications for programs, including functional correctness and security properties. The F* type-checker aims to prove that programs meet their specifications using a combination of SMT solving and manual proofs. Programs written in F* can be translated to OCaml, F#, and C for execution.
Isabelle (proof assistant)The Isabelle automated theorem prover is a higher-order logic (HOL) theorem prover, written in Standard ML and Scala. As an LCF-style theorem prover, it is based on a small logical core (kernel) to increase the trustworthiness of proofs without requiring yet supporting explicit proof objects. Isabelle is available inside a flexible system framework allowing for logically safe extensions, which comprise both theories as well as implementations for code-generation, documentation, and specific support for a variety of formal methods.
TwelfTwelf is an implementation of the logical framework LF developed by Frank Pfenning and Carsten Schürmann at Carnegie Mellon University. It is used for logic programming and for the formalization of programming language theory. At its simplest, a Twelf program (called a "signature") is a collection of declarations of type families (relations) and constants that inhabit those type families. For example, the following is the standard definition of the natural numbers, with standing for zero and the successor operator.
Recursive data typeIn computer programming languages, a recursive data type (also known as a recursively-defined, inductively-defined or inductive data type) is a data type for values that may contain other values of the same type. Data of recursive types are usually viewed as directed graphs. An important application of recursion in computer science is in defining dynamic data structures such as Lists and Trees. Recursive data structures can dynamically grow to an arbitrarily large size in response to runtime requirements; in contrast, a static array's size requirements must be set at compile time.