CIVIL-510: Quantitative imaging for engineersFirst 2 courses are Tuesday 16-19h!This course will arm students with knowledge of different imaging techniques for practical measurements in many different fields of civil engineering. Modalities wil
EE-566: Adaptation and learningIn this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
EE-345: Radiation and antennasLes antennes sont utilisées dans une multitude d'applications de communications et de détection, demandant des fréquences et propriétés d'antennes très différentes. Ce cours décrit la théorie de base
CS-119(c): Information, Computation, CommunicationL'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
CS-487: Industrial automationThis course consists of two parts:
- architecture of automation systems, hands-on lab
- dependable systems and handling of faults and failures in real-time systems, including fault-tolerant computin
CS-471: Advanced multiprocessor architectureMultiprocessors are basic building blocks for all computer systems. This course covers the architecture and organization of modern multiprocessors, prevalent accelerators (e.g., GPU, TPU), and datacen
PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
PHYS-203: Computational physics IAborder, formuler et résoudre des problèmes de physique en utilisant des méthodes numériques simples. Comprendre les avantages et les limites de ces méthodes (stabilité, convergence). Illustrer différ
CS-233(a): Introduction to machine learning (BA3)Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
MGT-411: Innovation managementThis is a collection of lectures on "structured innovation systems," codified approaches to stimulating and managing the process of innovation. Some of the systems to be covered may be Design Thinking