Hyperbolic 3-manifoldIn mathematics, more precisely in topology and differential geometry, a hyperbolic 3-manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to −1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries (a Kleinian group).
Geometrization conjectureIn mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries (Euclidean, spherical, or hyperbolic). In three dimensions, it is not always possible to assign a single geometry to a whole topological space.
Thurston elliptization conjectureWilliam Thurston's elliptization conjecture states that a closed 3-manifold with finite fundamental group is spherical, i.e. has a Riemannian metric of constant positive sectional curvature. A 3-manifold with a Riemannian metric of constant positive sectional curvature is covered by the 3-sphere, moreover the group of covering transformations are isometries of the 3-sphere. If the original 3-manifold had in fact a trivial fundamental group, then it is homeomorphic to the 3-sphere (via the covering map).
Haken manifoldIn mathematics, a Haken manifold is a compact, P2-irreducible 3-manifold that is sufficiently large, meaning that it contains a properly embedded two-sided incompressible surface. Sometimes one considers only orientable Haken manifolds, in which case a Haken manifold is a compact, orientable, irreducible 3-manifold that contains an orientable, incompressible surface. A 3-manifold finitely covered by a Haken manifold is said to be virtually Haken.
List of geometric topology topicsThis is a list of geometric topology topics. List of mathematical knots and links Knot (mathematics) Link (knot theory) Wild knots Examples of knots Unknot Trefoil knot Figure-eight knot (mathematics) Borromean rings Types of knots Torus knot Prime knot Alternating knot Hyperbolic link Knot invariants Crossing number Linking number Skein relation Knot polynomials Alexander polynomial Jones polynomial Knot group Writhe Quandle Seifert surface Braids Braid theory Braid group Kirby calculus Genus (mathematics
Knot (mathematics)In mathematics, a knot is an embedding of the circle S^1 into three-dimensional Euclidean space, R3 (also known as E3). Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of R3 which takes one knot to the other. A crucial difference between the standard mathematical and conventional notions of a knot is that mathematical knots are closed — there are no ends to tie or untie on a mathematical knot.
Homology sphereIn algebraic topology, a homology sphere is an n-manifold X having the homology groups of an n-sphere, for some integer . That is, and for all other i. Therefore X is a connected space, with one non-zero higher Betti number, namely, . It does not follow that X is simply connected, only that its fundamental group is perfect (see Hurewicz theorem). A rational homology sphere is defined similarly but using homology with rational coefficients.
Low-dimensional topologyIn mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.
Heegaard splittingIn the mathematical field of geometric topology, a Heegaard splitting (ˈhe̝ˀˌkɒˀ) is a decomposition of a compact oriented 3-manifold that results from dividing it into two handlebodies. Let V and W be handlebodies of genus g, and let ƒ be an orientation reversing homeomorphism from the boundary of V to the boundary of W. By gluing V to W along ƒ we obtain the compact oriented 3-manifold Every closed, orientable three-manifold may be so obtained; this follows from deep results on the triangulability of three-manifolds due to Moise.
Lens spaceA lens space is an example of a topological space, considered in mathematics. The term often refers to a specific class of 3-manifolds, but in general can be defined for higher dimensions. In the 3-manifold case, a lens space can be visualized as the result of gluing two solid tori together by a homeomorphism of their boundaries. Often the 3-sphere and , both of which can be obtained as above, are not counted as they are considered trivial special cases. The three-dimensional lens spaces were introduced by Heinrich Tietze in 1908.