Coulure (pronounced coo-LYUR) is a viticultural hazard that is the result of metabolic reactions to weather conditions that causes a failure of grapes to develop after flowering. In English the word shatter is sometimes used. Coulure is triggered by periods of cold, cloudy, rainy weather or very high out-of-season temperatures. The condition is most often manifested in the spring. It also occurs in vines that have little sugar content in their tissue. Flowers stay closed and are not fertilized. Thus the vines are not pollinated as the grape fails to develop and falls off. Coulure can also cause irregular bunches of grapes which are less compact than normal. These bunches are more sensitive to developing various grape diseases. The yield of a vine with coulure will decrease substantially. Grape varieties with high proclivity to coulure are Grenache, Malbec, Merlot, and Muscat Ottonel. Other causes of coulure may be vineyard conditions and practices, pruning too early or too severely, excessively fertile soils or overuse of fertilizers, and improper selection of rootstocks or clones.
During the flowering part of the growing season (May–June in the Northern Hemisphere, November–December in the Southern Hemisphere), grapevines often need dry conditions with sufficient sunlight and ambient air temperature around for pollination to go smoothly. Less ideal conditions, particularly wet, rainy weather, increases the odds that a higher than normal numbers of flowers go unpollinated and coulure to occur.
Coulure is a distinct phenomena unrelated to another viticultural hazard, millerandage, where the flowers are pollinated but the resulting berries develop without seeds and remain small. Like coulure, millerandage is often caused by inclement weather during the flowering and fruit set period and cause reduced yields.
Coulure is caused by a carbohydrate deficiency in the plant tissues that causes the vine to conserve resources that would otherwise be funneled into the developing grape berries.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The annual growth cycle of grapevines is the process that takes place in the vineyard each year, beginning with bud break in the spring and culminating in leaf fall in autumn followed by winter dormancy. From a winemaking perspective, each step in the process plays a vital role in the development of grapes with ideal characteristics for making wine.
In viticulture, the canopy of a grapevine includes the parts of the vine visible aboveground - the trunk, cordon, stems, leaves, flowers, and fruit. The canopy plays a key role in light energy capture via photosynthesis, water use as regulated by transpiration, and microclimate of ripening grapes. Canopy management is an important aspect of viticulture due to its effect on grape yields, quality, vigor, and the prevention of grape diseases. Various viticulture problems, such as uneven grape ripening, sunburn, and frost damage, can be addressed by skillful canopy management.
Irrigation in viticulture is the process of applying extra water in the cultivation of grapevines. It is considered both controversial and essential to wine production. In the physiology of the grapevine, the amount of available water affects photosynthesis and hence growth, as well as the development of grape berries. While climate and humidity play important roles, a typical grape vine needs 25-35 inches (635-890 millimeters) of water a year, occurring during the spring and summer months of the growing season, to avoid stress.
Vine shoots are the viticulture residues generated in high quantities after the grapevine pruning. They are lignocellulosic material poorly exploited as feedstock. These wastes are often dumped in the agriculture fields or burnt. Due to their availability ...