Concept

Reduced residue system

In mathematics, a subset R of the integers is called a reduced residue system modulo n if: gcd(r, n) = 1 for each r in R, R contains φ(n) elements, no two elements of R are congruent modulo n. Here φ denotes Euler's totient function. A reduced residue system modulo n can be formed from a complete residue system modulo n by removing all integers not relatively prime to n. For example, a complete residue system modulo 12 is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. The so-called totatives 1, 5, 7 and 11 are the only integers in this set which are relatively prime to 12, and so the corresponding reduced residue system modulo 12 is {1, 5, 7, 11}. The cardinality of this set can be calculated with the totient function: φ(12) = 4. Some other reduced residue systems modulo 12 are: {13,17,19,23} {−11,−7,−5,−1} {−7,−13,13,31} {35,43,53,61} If {r1, r2, ... , rφ(n)} is a reduced residue system modulo n with n > 2, then . Every number in a reduced residue system modulo n is a generator for the additive group of integers modulo n. If {r1, r2, ... , rφ(n)} is a reduced residue system modulo n, and a is an integer such that gcd(a, n) = 1, then {ar1, ar2, ... , arφ(n)} is also a reduced residue system modulo n.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.