Related concepts (37)
Near-field (mathematics)
In mathematics, a near-field is an algebraic structure similar to a division ring, except that it has only one of the two distributive laws. Alternatively, a near-field is a near-ring in which there is a multiplicative identity and every non-zero element has a multiplicative inverse. A near-field is a set together with two binary operations, (addition) and (multiplication), satisfying the following axioms: A1: is an abelian group. A2: = for all elements , , of (The associative law for multiplication).
Completely distributive lattice
In the mathematical area of order theory, a completely distributive lattice is a complete lattice in which arbitrary joins distribute over arbitrary meets. Formally, a complete lattice L is said to be completely distributive if, for any doubly indexed family {xj,k | j in J, k in Kj} of L, we have where F is the set of choice functions f choosing for each index j of J some index f(j) in Kj. Complete distributivity is a self-dual property, i.e. dualizing the above statement yields the same class of complete lattices.
Algebra of sets
In mathematics, the algebra of sets, not to be confused with the mathematical structure of an algebra of sets, defines the properties and laws of sets, the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Pointwise
In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value of some function An important class of pointwise concepts are the pointwise operations, that is, operations defined on functions by applying the operations to function values separately for each point in the domain of definition. Important relations can also be defined pointwise.
GF(2)
(also denoted , Z/2Z or ) is the finite field of two elements (GF is the initialism of Galois field, another name for finite fields). Notations Z_2 and may be encountered although they can be confused with the notation of 2-adic integers. GF(2) is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively 0 and 1, as usual. The elements of GF(2) may be identified with the two possible values of a bit and to the boolean values true and false.
Near-semiring
In mathematics, a near-semiring, also called a seminearring, is an algebraic structure more general than a near-ring or a semiring. Near-semirings arise naturally from functions on monoids. A near-semiring is a set S with two binary operations "+" and "·", and a constant 0 such that (S, +, 0) is a monoid (not necessarily commutative), (S, ·) is a semigroup, these structures are related by a single (right or left) distributive law, and accordingly 0 is a one-sided (right or left, respectively) absorbing element.
Mereology
In logic, philosophy and related fields, mereology ( (root: μερε-, mere-, 'part') and the suffix -logy, 'study, discussion, science') is the study of parts and the wholes they form. Whereas set theory is founded on the membership relation between a set and its elements, mereology emphasizes the meronomic relation between entities, which—from a set-theoretic perspective—is closer to the concept of inclusion between sets. Mereology has been explored in various ways as applications of predicate logic to formal ontology, in each of which mereology is an important part.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.