Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this work, we draw attention to a connection between skill-based models of game outcomes and Gaussian process classification models. The Gaussian process perspective enables a) a principled way of dealing with uncertainty and b) rich models, specified t ...
In recent years, there has been a growing interest in developing countermeasures against non zero-effort attacks for speaker verification systems. Until now, the focus has been on logical access attacks, where the spoofed samples are injected into the syst ...
Degradation in data quality is still a main source of errors in the modern biometric recognition systems. However, the data quality can be embedded in the recognition methods at global and local levels to build more accurate biometric systems. Local qualit ...
Any biometric recognizer is vulnerable to spoofing attacks and hence voice biometric, also called automatic speaker verification (ASV), is no exception; replay, synthesis, and conversion attacks all provoke false acceptances unless countermeasures are used ...
In this paper, modified group delay (MODGD) features are used to model target speakers in the Total Variability Space (TVS) framework for speaker recognition. MODGD based features have been shown to improve speaker recognition performance owing to the abil ...
Automatic processing of multiparty interactions is a research domain with important applications in content browsing, summarization and information retrieval. In recent years, several works have been devoted to find regular patterns which speakers exhibit ...
This paper presents Subspace Gaussian Mixture Model (SGMM) approach employed as a probabilistic generative model to estimate speaker vector representations to be subsequently used in the speaker verification task. SGMMs have already been shown to significa ...
We propose to model the acoustic space of deep neural network (DNN) class-conditional posterior probabilities as a union of low- dimensional subspaces. To that end, the training posteriors are used for dictionary learning and sparse coding. Sparse represen ...
This paper presents Subspace Gaussian Mixture Model (SGMM) approach employed as a probabilistic generative model to estimate speaker vector representations to be subsequently used in the speaker verification task. SGMMs have already been shown to significa ...
We propose to model the acoustic space of deep neural network (DNN) class-conditional posterior probabilities as a union of lowdimensional subspaces. To that end, the training posteriors are used for dictionary learning and sparse coding. Sparse representa ...