Concept

Realization (systems)

In systems theory, a realization of a state space model is an implementation of a given input-output behavior. That is, given an input-output relationship, a realization is a quadruple of (time-varying) matrices such that with describing the input and output of the system at time . For a linear time-invariant system specified by a transfer matrix, , a realization is any quadruple of matrices such that . Any given transfer function which is strictly proper can easily be transferred into state-space by the following approach (this example is for a 4-dimensional, single-input, single-output system)): Given a transfer function, expand it to reveal all coefficients in both the numerator and denominator. This should result in the following form: The coefficients can now be inserted directly into the state-space model by the following approach: This state-space realization is called controllable canonical form (also known as phase variable canonical form) because the resulting model is guaranteed to be controllable (i.e., because the control enters a chain of integrators, it has the ability to move every state). The transfer function coefficients can also be used to construct another type of canonical form This state-space realization is called observable canonical form because the resulting model is guaranteed to be observable (i.e., because the output exits from a chain of integrators, every state has an effect on the output). If we have an input , an output , and a weighting pattern then a realization is any triple of matrices such that where is the state-transition matrix associated with the realization. System identification System identification techniques take the experimental data from a system and output a realization. Such techniques can utilize both input and output data (e.g. eigensystem realization algorithm) or can only include the output data (e.g. frequency domain decomposition). Typically an input-output technique would be more accurate, but the input data is not always available.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.