The spring bloom is a strong increase in phytoplankton abundance (i.e. stock) that typically occurs in the early spring and lasts until late spring or early summer. This seasonal event is characteristic of temperate North Atlantic, sub-polar, and coastal waters. Phytoplankton blooms occur when growth exceeds losses, however there is no universally accepted definition of the magnitude of change or the threshold of abundance that constitutes a bloom. The magnitude, spatial extent and duration of a bloom depends on a variety of abiotic and biotic factors. Abiotic factors include light availability, nutrients, temperature, and physical processes that influence light availability, and biotic factors include grazing, viral lysis, and phytoplankton physiology. The factors that lead to bloom initiation are still actively debated (see Critical depth). In the spring, more light becomes available and stratification of the water column occurs as increasing temperatures warm the surface waters (referred to as thermal stratification). As a result, vertical mixing is inhibited and phytoplankton and nutrients are entrained in the euphotic zone. This creates a comparatively high nutrient and high light environment that allows rapid phytoplankton growth. Along with thermal stratification, spring blooms can be triggered by salinity stratification due to freshwater input, from sources such as high river runoff. This type of stratification is normally limited to coastal areas and estuaries, including Chesapeake Bay. Freshwater influences primary productivity in two ways. First, because freshwater is less dense, it rests on top of seawater and creates a stratified water column. Second, freshwater often carries nutrients that phytoplankton need to carry out processes, including photosynthesis. Rapid increases in phytoplankton growth, that typically occur during the spring bloom, arise because phytoplankton can reproduce rapidly under optimal growth conditions (i.e., high nutrient levels, ideal light and temperature, and minimal losses from grazing and vertical mixing).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.