Summary
A wire chamber or multi-wire proportional chamber is a type of proportional counter that detects charged particles and photons and can give positional information on their trajectory, by tracking the trails of gaseous ionization. The multi-wire chamber uses an array of wires at high voltage (anode), which run through a chamber with conductive walls held at ground potential (cathode). Alternatively, the wires may be at ground potential and the cathode held at a high negative voltage; the important thing is that a uniform electric field draws extra electrons or negative ions to the anode wires with little lateral motion. The chamber is filled with carefully chosen gas, such as an argon/methane mix, such that any ionizing particle that passes through the tube will ionize surrounding gaseous atoms. The resulting ions and electrons are accelerated by the electric field across the chamber, causing a localised cascade of ionization known as a Townsend avalanche. This collects on the nearest wire and results in a charge proportional to the ionisation effect of the detected particle. By computing pulses from all the wires, the particle trajectory can be found. Adaptations of this basic design are the thin gap, resistive plate and drift chambers. The drift chamber is also subdivided into ranges of specific use in the chamber designs known as time projection, microstrip gas, and those types of detectors that use silicon. In 1968, Georges Charpak, while at the European Organization for Nuclear Research (CERN), invented and developed the multi-wire proportional chamber (MWPC). This invention resulted in him winning the Nobel Prize for Physics in 1992. The chamber was an advancement of the earlier bubble chamber rate of detection of only one or two particles every second to 1000 particle detections every second. The MWPC produced electronic signals from particle detection, allowing scientists to examine data via computers. The multi-wire chamber is a development of the spark chamber.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (26)