Serine hydroxymethyltransferase (SHMT) is a pyridoxal phosphate (PLP) (Vitamin B6) dependent enzyme () which plays an important role in cellular one-carbon pathways by catalyzing the reversible, simultaneous conversions of L-serine to glycine and tetrahydrofolate (THF) to 5,10-Methylenetetrahydrofolate (5,10-CH2-THF). This reaction provides the largest part of the one-carbon units available to the cell. The structure of the SHMT monomer is similar across prokaryotes and eukaryotes, but whereas the active enzyme is a dimer in prokaryotes, the enzyme exists as a tetramer in eukaryotic cells, though the evolutionary basis for this difference in structure is unknown. However, the evolutionary path taken by SHMT going from prokaryotic dimeric form to the eukaryotic tetrameric form can be easily seen as a sort of doubling event. In other words, the eukaryotic SHMT tetramer resembles two prokaryotic dimers that have packed together, forming what has been described as a “dimer of dimers.” The interaction between two monomers within a dimer subunit has been found to occur over a greater contact area and is thus much tighter than the interaction between the two dimers. Human Serine hydroxymethyltransferase 2 (SHMT2) regulates one-carbon transfer reactions required for amino acid and nucleotide metabolism, and the regulated switch between dimeric and tetrameric forms of SHMT2, which is induced by Pyridoxal phosphate, has recently been shown to be involved in regulation of the BRISC deubiqutylase complex, linking metabolism to inflammation. The SHMT2 dimer, but not the PLP-bound tetramer, is a potent inhibitor of the multimeric BRISC complex, revealing a potential mechanism for SHMT2 regulation of inflammation A single SHMT monomer can be subdivided into three domains: an N-terminus “arm,” a “large” domain, and a “small” domain. The N-terminus arm appears to maintain the tight interaction between two monomers. The arm, consisting of two alpha helices and a beta sheet, wraps around the other monomer when in oligomeric form.
Christian Heinis, Alessandro Zorzi, Patrick Andreas Gonschorek