Summary
El Niño (ɛl_ˈniːnjoʊ , el ˈniɲo; The Boy) is the warm phase of the El Niño–Southern Oscillation (ENSO) and is associated with a band of warm ocean water that develops in the central and east-central equatorial Pacific (approximately between the International Date Line and 120°W), including the area off the Pacific coast of South America. The ENSO is the cycle of warm and cold sea surface temperature (SST) of the tropical central and eastern Pacific Ocean. El Niño is accompanied by high air pressure in the western Pacific and low air pressure in the eastern Pacific. El Niño phases are known to last close to four years; however, records demonstrate that the cycles have lasted between two and seven years. During the development of El Niño, rainfall develops between September–November. The cool phase of ENSO is La Niña, with sea surface temperatures (SSTs) in the eastern Pacific below average, and air pressure high in the eastern Pacific and low in the western Pacific. The ENSO cycle, including both El Niño and La Niña, causes global changes in temperature and rainfall. Developing countries that depend on their own agriculture and fishing, particularly those bordering the Pacific Ocean, are usually most affected. In this phase of the Oscillation, the pool of warm water in the Pacific near South America is often at its warmest about Christmas. The original phrase, El Niño de Navidad, arose centuries ago, when Peruvian fishermen named the weather phenomenon after the newborn Christ. Originally, the term El Niño applied to an annual weak warm ocean current that ran southwards along the coast of Peru and Ecuador at about Christmas time. However, over time the term has evolved and now refers to the warm and negative phase of the El Niño–Southern Oscillation and is the warming of the ocean surface or above-average sea surface temperatures in the central and eastern tropical Pacific Ocean. This warming causes a shift in the atmospheric circulation with rainfall becoming reduced over Indonesia, India and northern Australia, while rainfall and tropical cyclone formation increases over the tropical Pacific Ocean.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (65)
El Niño
El Niño (ɛl_ˈniːnjoʊ , el ˈniɲo; The Boy) is the warm phase of the El Niño–Southern Oscillation (ENSO) and is associated with a band of warm ocean water that develops in the central and east-central equatorial Pacific (approximately between the International Date Line and 120°W), including the area off the Pacific coast of South America. The ENSO is the cycle of warm and cold sea surface temperature (SST) of the tropical central and eastern Pacific Ocean.
Pacific Ocean
The Pacific Ocean is the largest and deepest of Earth's five oceanic divisions. It extends from the Arctic Ocean in the north to the Southern Ocean (or, depending on definition, to Antarctica) in the south, and is bounded by the continents of Asia and Oceania in the west and the Americas in the east. At in area (as defined with a southern Antarctic border), this largest division of the World Ocean and the hydrosphere covers about 46% of Earth's water surface and about 32% of the planet's total surface area, larger than its entire land area ().
Climate change
In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is more rapid than previous changes, and is primarily caused by humans burning fossil fuels. Fossil fuel use, deforestation, and some agricultural and industrial practices increase greenhouse gases, notably carbon dioxide and methane.
Show more
Related courses (1)
ENV-410: Science of climate change
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
Related lectures (5)
Climate Variability: Understanding Natural Climate Modes
Explores natural climate modes like NAO and ENSO, their impact on global temperature, and the urgency of emissions reduction.
Paleoclimate, Climate Variability, Paris Agreement
Delves into paleoclimate, climate variability, and international climate agreements.
Climate Variability: Cities and Solutions
Discusses the impact of climate variability on cities, exploring solutions and challenges in the context of global warming trends.
Show more