Concept

Hydrogen fuel

Hydrogen fuel refers to hydrogen which is burned as fuel with pure oxygen (not to be confused with atmospheric gases). It can be a zero-carbon fuel, provided that it is created in a process that does not involve carbon. However, most hydrogen comes from fossil fuels, resulting in carbon dioxide emissions. Depending on the source and the resulting environmental impact, hydrogen that is sourced from various methods can be referred to by a variety of terms using metaphorical names of colors: white, green, blue, grey, black, or brown hydrogen. It can be used in fuel cells or internal combustion engines (see HICEV). Regarding hydrogen vehicles, hydrogen has begun to be used in commercial fuel cell vehicles such as passenger cars, and has been used in fuel cell buses for many years. It is also used as a fuel for spacecraft propulsion and is being proposed for hydrogen-powered aircraft. The fuel technology has seen awakened interest from automakers who claim it is comparatively cheap and safer to incorporate into the modern vehicle architecture over recent challenges faced by electric vehicle makers. Hydrogen production Because pure hydrogen does not occur naturally on Earth in large quantities, it usually requires a primary energy input to get produced on an industrial scale. Hydrogen fuel can be produced from methane or by electrolysis of water. As of 2020, the majority of hydrogen (~95%) is produced from fossil fuels by steam reforming or partial oxidation of methane and coal gasification with only a small quantity by other routes such as biomass gasification or electrolysis of water. Steam–methane reforming, the current leading technology for producing hydrogen in large quantities, extracts hydrogen from methane. However, this reaction releases fossil carbon dioxide and carbon monoxide into the atmosphere, which are greenhouse gases exogenous to the natural carbon cycle, and thus contribute to climate change.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (22)
ENG-410: Energy supply, economics and transition
This course examines energy systems from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the energy demand, and how
PHYS-443: Physics of nuclear reactors
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
PHYS-423: Plasma I
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
Show more
Related lectures (35)
Energy Transition and Modeling
Discusses hydrogen's role in the future energy mix, key drivers of energy transition, challenges in modeling domestic energy demand, and integration of energy models.
Swiss Energy Transition: Hydrogen Role & Optimality
By Lionel Perret discusses the Swiss energy transition towards 100% renewables by 2050, emphasizing the role of hydrogen in the future energy system.
Solar Fuels: Conversion Pathways and Reactor Concepts
Explores solar energy conversion into fuels, reactor concepts, and material requirements for efficient photoelectrochemistry.
Show more
Related concepts (16)
Internal combustion engine
An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons (piston engine), turbine blades (gas turbine), a rotor (Wankel engine), or a nozzle (jet engine).
Fuel
A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy but has since also been applied to other sources of heat energy, such as nuclear energy (via nuclear fission and nuclear fusion). The heat energy released by reactions of fuels can be converted into mechanical energy via a heat engine.
Fuel cell vehicle
A fuel cell vehicle (FCV) or fuel cell electric vehicle (FCEV) is an electric vehicle that uses a fuel cell, sometimes in combination with a small battery or supercapacitor, to power its onboard electric motor. Fuel cells in vehicles generate electricity generally using oxygen from the air and compressed hydrogen. Most fuel cell vehicles are classified as zero-emissions vehicles that emit only water and heat. As compared with internal combustion vehicles, hydrogen vehicles centralize pollutants at the site of the hydrogen production, where hydrogen is typically derived from reformed natural gas.
Show more
Related MOOCs (2)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
The Radio Sky I: Science and Observations
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.