Summary
In computer science, the maximum sum subarray problem, also known as the maximum segment sum problem, is the task of finding a contiguous subarray with the largest sum, within a given one-dimensional array A[1...n] of numbers. It can be solved in time and space. Formally, the task is to find indices and with , such that the sum is as large as possible. (Some formulations of the problem also allow the empty subarray to be considered; by convention, the sum of all values of the empty subarray is zero.) Each number in the input array A could be positive, negative, or zero. For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array. If the array contains all non-positive numbers, then a solution is any subarray of size 1 containing the maximal value of the array (or the empty subarray, if it is permitted). Several different sub-arrays may have the same maximum sum. Although this problem can be solved using several different algorithmic techniques, including brute force, divide and conquer, dynamic programming, and reduction to shortest paths, a simple single-pass algorithm known as Kadane's algorithm solves it efficiently. The maximum subarray problem was proposed by Ulf Grenander in 1977 as a simplified model for maximum likelihood estimation of patterns in digitized images. Grenander was looking to find a rectangular subarray with maximum sum, in a two-dimensional array of real numbers. A brute-force algorithm for the two-dimensional problem runs in O(n6) time; because this was prohibitively slow, Grenander proposed the one-dimensional problem to gain insight into its structure. Grenander derived an algorithm that solves the one-dimensional problem in O(n2) time, improving the brute force running time of O(n3). When Michael Shamos heard about the problem, he overnight devised an O(n log n) divide-and-conquer algorithm for it.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.