Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Binary weights are favored in electronic and optical hardware implementations of neural networks as they lead to improved system speeds. Optical neural networks based on fast ferroelectric liquid crystal binary level devices can benefit from the many order ...
We investigate generic models for cortical microcircuits, i.e., recurrent circuits of integrate-and-fire neurons with dynamic synapses. These complex dynamic systems subserve the amazing information processing capabilities of the cortex, but are at the pre ...
A nonlinear recurrent neural network is trained to synthesize chaotic signals. The identification process is reduced to a teaching phase and a linear regression. The influence of the shape of the nonlinearity in the neurons and the noise amplitude are stud ...
In this paper, to learn multiple tasks sharing same inputs, a two-layer architecture for a reservoir based recurrent neural network is proposed. The inputs are fed into the general workspace layer where the weights are adapted to provide maximum informatio ...
A key challenge for neural modeling is to explain how a continuous stream of multimodal input from a rapidly changing environment can be processed by stereotypical recurrent circuits of integrate-and-fire neurons in real time. We propose a new computationa ...
Two classes of dynamical recurrent neural networks, Continuous Time Recurrent Neural Networks (CTRNNs) (Yamauchi and Beer, 1994) and Plastic Neural Networks (PNNs) (Floreano and Urzelai, 2000) are compared on two behavioral tasks aimed at exploring their c ...
We derive a plausible learning rule updating the synaptic efficacies for feedforward, feedback and lateral connections between observed and latent neurons. Operating in the context of a generative model for distributions of spike sequences, the learning me ...
An implementation of an optical perceptron with a soft optical threshold trained with an adapted BP algorithm is described as a precursor to an optical multilayer perceptron (MLP). It has 64 inputs and ten outputs. The soft threshold is implemented by a li ...
Recurrent neural networks based on reservoir computing are increasingly being used in many applications. Optimization of the topological structure of the reservoir and the internal connection weights for a given task is one of the most important problems i ...
An implementation of an optical perceptron with a soft optical threshold trained with an adapted BP algorithm is described as a precursor to an optical multilayer perceptron (MLP). It has 64 inputs and ten outputs. The soft threshold is implemented by a li ...