Keggin structure is the best known structural form for heteropoly acids. It is the structural form of α-Keggin anions, which have a general formula of , where X is the heteroatom (most commonly are pentavalent phosphorus PV, tetravalent silicon SiIV, or trivalent boron BIII), M is the addendum atom (most common are molybdenum Mo and tungsten W), and O represents oxygen. The structure self-assembles in acidic aqueous solution and is the most stable structure of polyoxometalate catalysts. The first α-Keggin anion, ammonium phosphomolybdate (), was first reported by Berzelius in 1826. In 1892, Blomstrand proposed the structure of phosphomolybdic acid and other poly-acids as a chain or ring configuration. Alfred Werner, using the coordination compounds ideas of Copaux, attempted to explain the structure of silicotungstic acid. He assumed a central group, ion, enclosed by four , where R is a unipositive ion. The are linked to the central group by primary valences. Two more groups were linked to the central group by secondary valences. This proposal accounted for the characteristics of most poly-acids, but not all. In 1928, Linus Pauling proposed a structure for α-Keggin anions consisting of a tetrahedral central ion, , caged by twelve octahedra. In this proposed structure, three of the oxygen on each of the octahedra shared electrons with three neighboring octahedra. As a result, 18 oxygen atoms were used as bridging atoms between the metal atoms. The remaining oxygen atoms bonded to a proton. This structure explained many characteristics that were observed such as basicities of alkali metal salts and the hydrated form of some of the salts. However the structure could not explain the structure of dehydrated acids. James Fargher Keggin with the use of X-ray diffraction experimentally determined the structure of α-Keggin anions in 1934. The Keggin structure accounts for both the hydrated and dehydrated α-Keggin anions without the need for significant structural change. The Keggin structure is the widely accepted structure for the α-Keggin anions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (2)
Related concepts (3)
Phosphotungstic acid
Phosphotungstic acid (PTA) or tungstophosphoric acid (TPA), is a heteropoly acid with the chemical formula . It forms hydrates . It is normally isolated as the n = 24 hydrate but can be desiccated to the hexahydrate (n = 6). EPTA is the name of ethanolic phosphotungstic acid, its alcohol solution used in biology. It has the appearance of small, colorless-grayish or slightly yellow-green crystals, with melting point 89 °C (24 hydrate). It is odorless and soluble in water (200 g/100 ml).
Heteropolymetalate
In chemistry, the heteropolymetalates are a subset of the polyoxometalates, which consist of three or more transition metal oxyanions linked together by shared oxygen atoms to form a closed 3-dimensional molecular framework. In contrast to isopolymetalates, which contain only one kind of metal atom, the heteropolymetalates contain differing main group oxyanions. The metal atoms are usually group 6 (Mo, W) or less commonly group 5 (V, Nb, Ta) transition metals in their highest oxidation states.
Tungsten
Tungsten (also called wolfram) is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isolated as a metal in 1783. Its important ores include scheelite and wolframite, the latter lending the element its alternate name. The free element is remarkable for its robustness, especially the fact that it has the highest melting point of all known elements, melting at .

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.