Proteus (moon)Proteus (ˈproʊtiəs ), also known as Neptune VIII, is the second-largest Neptunian moon, and Neptune's largest inner satellite. Discovered by Voyager 2 spacecraft in 1989, it is named after Proteus, the shape-changing sea god of Greek mythology. Proteus orbits Neptune in a nearly equatorial orbit at a distance of about 4.75 times the radius of Neptune's equator. Despite being a predominantly icy body more than in diameter, Proteus's shape deviates significantly from an ellipsoid.
Specific angular momentumIn celestial mechanics, the specific relative angular momentum (often denoted or ) of a body is the angular momentum of that body divided by its mass. In the case of two orbiting bodies it is the vector product of their relative position and relative linear momentum, divided by the mass of the body in question. Specific relative angular momentum plays a pivotal role in the analysis of the two-body problem, as it remains constant for a given orbit under ideal conditions. "Specific" in this context indicates angular momentum per unit mass.
Radial trajectoryIn astrodynamics and celestial mechanics a radial trajectory is a Kepler orbit with zero angular momentum. Two objects in a radial trajectory move directly towards or away from each other in a straight line. There are three types of radial trajectories (orbits). Radial elliptic trajectory: an orbit corresponding to the part of a degenerate ellipse from the moment the bodies touch each other and move away from each other until they touch each other again. The relative speed of the two objects is less than the escape velocity.
Apsidal precessionIn celestial mechanics, apsidal precession (or apsidal advance) is the precession (gradual rotation) of the line connecting the apsides (line of apsides) of an astronomical body's orbit. The apsides are the orbital points farthest (apoapsis) and closest (periapsis) from its primary body (therefore it can be also called after any of the apsides). The apsidal precession is the first time derivative of the argument of periapsis, one of the six main orbital elements of an orbit.
Hills cloudIn astronomy, the Hills cloud (also called the inner Oort cloud and inner cloud) is a vast theoretical circumstellar disc, interior to the Oort cloud, whose outer border would be located at around 20,000 to 30,000 astronomical units (AU) from the Sun, and whose inner border, less well defined, is hypothetically located at 250AU, well beyond planetary and Kuiper Belt object orbits—but distances might be much greater. If it exists, the Hills cloud contains roughly 5 times as many comets as the Oort cloud.
Kepler problemIn classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force F that varies in strength as the inverse square of the distance r between them. The force may be either attractive or repulsive. The problem is to find the position or speed of the two bodies over time given their masses, positions, and velocities. Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital elements.
Amalthea (moon)Amalthea æməlˈθiːə is a moon of Jupiter. It has the third closest orbit around Jupiter among known moons and was the fifth moon of Jupiter to be discovered, so it is also known as Jupiter V. It is also the fifth largest moon of Jupiter, after the four Galilean Moons. Edward Emerson Barnard discovered the moon on 9 September 1892 and named it after Amalthea of Greek mythology. It was the last natural satellite to be discovered by direct visual observation; all later moons were discovered by photographic or digital imaging.
Tidal circularizationTidal circularization is an effect of the tidal forces between a body in orbit around a central celestial object, whereby the eccentricity of the orbit is reduced over time so that it becomes less and less elliptical. In figure 1 let's start by assuming body 1 is a star and body 2 is another star or maybe a Jupiter like planet. Initially think of body2 as a point mass. The gravity from Body 2 applied to Body 1 produces tidal bulges (see Tidal Force). Let's assume the orbital period is slower than the rotation of Body 1 (ω
Extinct cometAn extinct comet is a comet that has expelled most of its volatile ice and has little left to form a tail and coma. In a dormant comet, rather than being depleted, any remaining volatile components have been sealed beneath an inactive surface layer. Due to the near lack of a coma and tail, an extinct or dormant comet may resemble an asteroid rather than a comet and blur the distinction between these two classes of small Solar System bodies.