Summary
A cyclopentadienyl complex is a coordination complex of a metal and cyclopentadienyl groups (C5H5−, abbreviated as Cp−). Cyclopentadienyl ligands almost invariably bind to metals as a pentahapto (η5-) bonding mode. The metal–cyclopentadienyl interaction is typically drawn as a single line from the metal center to the center of the Cp ring. Biscyclopentadienyl complexes are called metallocenes. A famous example of this type of complex is ferrocene (FeCp2), which has many analogues for other metals, such as chromocene (CrCp2), cobaltocene (CoCp2), and nickelocene (NiCp2). When the Cp rings are mutually parallel the compound is known as a sandwich complex. This area of organometallic chemistry was first developed in the 1950s. Bent metallocenes are represented by compounds of the type [MCp2Lx]. Some are catalysts for ethylene polymerization. Metallocenes are often thermally stable, and find use as catalysts in various types of reactions. Mixed-ligand Cp complexes containing Cp ligand and one or more other ligands. They are more numerous. One widely studied example is the Fp dimer, (Cp2Fe2(CO)4). Monometallic compounds featuring only one Cp ring are often known as half sandwich compounds or as piano stool compounds, one example being methylcyclopentadienylmanganese tricarbonyl (CpMn(CO)3). All 5 carbon atoms of a Cp ligand are bound to the metal in the vast majority of M–Cp complexes. This bonding mode is called η5-coordination. The M–Cp bonding arises from overlap of the five π molecular orbitals of the Cp ligand with the s, p, and d orbitals on the metal. These complexes are referred to as π-complexes. Almost all of the transition metals employ this coordination mode. In relatively rare cases, Cp binds to metals via only one carbon center. These types of interactions are described as σ-complexes because they only have a σ bond between the metal and the cyclopentadienyl group. Typical examples of this type of complex are group 14 metal complexes such as CpSiMe3. An example of both is (Cp2Fe(CO)2).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (72)
Related concepts (15)
Cyclopentadiene
Cyclopentadiene is an organic compound with the formula C5H6. It is often abbreviated CpH because the cyclopentadienyl anion is abbreviated Cp−. This colorless liquid has a strong and unpleasant odor. At room temperature, this cyclic diene dimerizes over the course of hours to give dicyclopentadiene via a Diels–Alder reaction. This dimer can be restored by heating to give the monomer. The compound is mainly used for the production of cyclopentene and its derivatives.
Sandwich compound
In organometallic chemistry, a sandwich compound is a chemical compound featuring a metal bound by haptic, covalent bonds to two arene (ring) ligands. The arenes have the formula , substituted derivatives (for example ) and heterocyclic derivatives (for example ). Because the metal is usually situated between the two rings, it is said to be "sandwiched". A special class of sandwich complexes are the metallocenes. The term sandwich compound was introduced in organometallic nomenclature in 1956 in a report by J.
Ferrocene
Ferrocene is an organometallic compound with the formula . The molecule is a complex consisting of two cyclopentadienyl rings bound to a central iron atom. It is an orange solid with a camphor-like odor, that sublimes above room temperature, and is soluble in most organic solvents. It is remarkable for its stability: it is unaffected by air, water, strong bases, and can be heated to 400 °C without decomposition. In oxidizing conditions it can reversibly react with strong acids to form the ferrocenium cation .
Show more
Related courses (1)
CH-223: Organometallic chemistry
Basic organometallic chemistry will be covered in this course.
  1. Structure and bonding in organometallic compounds.
  2. reactivity of organometallic compounds, stoichiometric reactions, catalyzed rea
Related lectures (12)
Linear Transformations and Change of Bases
Covers linear transformations, change of bases, and diagonalization of matrices.
Supramolecular Chemistry: Crown Ethers and Complexation
Explores crown ethers, complexation with alkali metal ions, anion recognition, and fluorescence sensors.
Transition Metal Complexes
Explains the 18 Valence Electron rule for stability in transition metal complexes and the common ligands' electron contributions.
Show more