MATH-203(c): Analysis IIILe cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour
résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
MICRO-310(b): Signals and systems I (for SV)Présentation des concepts et des outils de base pour l'analyse et la caractérisation des signaux, la conception de systèmes de traitement et la modélisation linéaire de systèmes pour les étudiants en
EE-559: Deep learningThis course explores how to design reliable discriminative and generative neural networks, the ethics of data acquisition and model deployment, as well as modern multi-modal models.
EE-512: Applied biomedical signal processingThe goal of this course is twofold: (1) to introduce physiological basis, signal acquisition solutions (sensors) and state-of-the-art signal processing techniques, and (2) to propose concrete examples
EE-490(a): Lab in acousticsApply the knowledge acquired in Electroacoustics, Audio Engineering and Propagation of Acoustic Waves lectures.
PHYS-332: Computational physics IIIThis course teaches the students practical skills needed for solving modern physics problems by means of computation. A number of examples illustrate the utility of numerical computations in various d