Concept

Phase retrieval

Summary
Phase retrieval is the process of algorithmically finding solutions to the phase problem. Given a complex signal F(k), of amplitude |F (k)| , and phase \psi(k): ::F(k) = |F(k)|e^{i \psi(k)} =\int_{-\infty}^{\infty} f(x)\ e^{- 2\pi i k \cdot x},dx where x is an M-dimensional spatial coordinate and k is an M-dimensional spatial frequency coordinate. Phase retrieval consists of finding the phase that satisfies a set of constraints for a measured amplitude. Important applications of phase retrieval include X-ray crystallography, transmission electron microscopy and coherent diffractive imaging, for which M = 2. Uniqueness theorems for both 1-D and 2-D cases of the phase retrieval problem, including the phaseless 1-D inverse scattering problem, were proven by Klibanov and his collaborators (see References). Problem formulation Here we consider 1-D discrete Fourier transform (DFT) phase retrieval problem. The DF
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading