Concept

Selenium-79

Selenium-79 is a radioisotope of selenium present in spent nuclear fuel and the wastes resulting from reprocessing this fuel. It is one of only 7 long-lived fission products. Its fission yield is low (about 0.04%), as it is near the lower end of the mass range for fission products. Its half-life has been variously reported as 650,000 years, 65,000 years, 1.13 million years, 480,000 years, 295,000 years, 377,000 years and most recently with best current precision, 327,000 years. 79Se decays to 79Br by emitting a beta particle with no attendant gamma radiation (i.e., 100% β decay). This complicates its detection and liquid scintillation counting (LSC) is required for measuring it in environmental samples. The low specific activity (5.1 × 108 Bq/g) and relatively low energy (151 keV) of its beta particles have been said to limit the radioactive hazards of this isotope. Performance assessment calculations for the Belgian deep geological repository estimated 79Se may be the major contributor to activity release in terms of becquerels (decays per second), "attributable partly to the uncertainties about its migration behaviour in the Boom Clay and partly to its conversion factor in the biosphere." (p. 169). However, "calculations for the Belgian safety assessments use a half-life of 65 000 years" (p. 177), much less than the currently estimated half-life, and "the migration parameters ... have been estimated very cautiously for 79Se." (p. 179) Neutron absorption cross sections for 79Se have been estimated at 50 barns for thermal neutrons and 60.9 barns for resonance integral. Selenium-80 and selenium-82 have higher fission yields, about 20 times the yield of 79Se in the case of uranium-235, 6 times in the case of plutonium-239 or uranium-233, and 14 times in the case of plutonium-241. Due to redox-disequilibrium, selenium could be very reluctant to abiotic chemical reduction and would be released from the waste (spent fuel or vitrified waste) as selenate (SeO42–), a soluble Se(VI) species, not sorbed onto clay minerals.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (3)

Determination of the activity inventory and associated uncertainty quantification for the CROCUS zero power research reactor

Andreas Pautz, Mathieu Hursin, DongHyuk Lee

The paper describes the source term estimation of CROCUS, the zero power research reactor of EPFL, to be used for dispersion analysis under accidental conditions. To fulfil regulatory requirements, the source term of the CROCUS fuel is estimated through Mo ...
2019

Study of Nuclear Decay Data Contribution to Uncertainties in Heat Load Estimations for Spent Fuel Pools

Andreas Pautz, Mathieu Hursin, Hakim Ferroukhi, Alexander Vasiliev

At the Paul Scherrer Institut (PSI), a methodology for nuclear data uncertainty propagation in CASMO-5M (C5M) assembly calculations is under development. This paper presents a preliminary application of this methodology to C5M decay heat calculations. Appl ...
Academic Press Inc Elsevier Science2014

Internal gelation at PSI. The past and the future

Manuel Alexandre Pouchon

The Paul Scherrer Institute used to be very active in fuel fabrication R and D using the internal gelation process, which is a promising production method for spherical nuclear fuel. Such fuel kernels can be directly packed in a cylindrical cladding (a sph ...
2009
Related concepts (1)
Fission product yield
Nuclear fission splits a heavy nucleus such as uranium or plutonium into two lighter nuclei, which are called fission products. Yield refers to the fraction of a fission product produced per fission. Yield can be broken down by: Individual isotope Chemical element spanning several isotopes of different mass number but same atomic number. Nuclei of a given mass number regardless of atomic number. Known as "chain yield" because it represents a decay chain of beta decay.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.