Genetics and the Origin of Species is a 1937 book by the Ukrainian-American evolutionary biologist Theodosius Dobzhansky. It is regarded as one of the most important works of modern synthesis and was one of the earliest. The book popularized the work of population genetics to other biologists and influenced their appreciation for the genetic basis of evolution. In his book, Dobzhansky applied the theoretical work of Sewall Wright (1889–1988) to the study of natural populations, allowing him to address evolutionary problems in a novel way during his time. Dobzhansky implements theories of mutation, natural selection, and speciation throughout his book to explain the habits of populations and the resulting effects on their genetic behavior. The book explains evolution in depth as a process over time that accounts for the diversity of all life on Earth. The study of evolution was present, but greatly neglected at the time. Dobzhansky illustrates that evolution regarding the origin and nature of species during this time in history was deemed mysterious, but had expanding potential for progress to be made in its field.
In Darwin's theory of natural selection, more organisms are produced than can survive. Some have variations that give them a competitive advantage, and they have the best chance of surviving and procreating. The main element lacking in the theory was any mechanism that would allow organisms to pass on these favorable variations. Lacking such a mechanism, the theory of evolution faced competition from theories such as neo-Lamarckism, in which the environment acted directly on organisms, changing their structures. Darwin did not know that the monk Gregor Mendel was already working on experiments that would explain inheritance in terms of units of heredity that we now call genes.
When Mendelian genetics was rediscovered by several scientists, it initially increased the confusion. The Dutch botanist Hugo de Vries developed a theory called mutationism in which most variations were inconsequential and could not lead to species change.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Evolutionary thought, the recognition that species change over time and the perceived understanding of how such processes work, has roots in antiquity—in the ideas of the ancient Greeks, Romans, Chinese, Church Fathers as well as in medieval Islamic science.
Mutationism is one of several alternatives to evolution by natural selection that have existed both before and after the publication of Charles Darwin's 1859 book On the Origin of Species. In the theory, mutation was the source of novelty, creating new forms and new species, potentially instantaneously, in sudden jumps. This was envisaged as driving evolution, which was thought to be limited by the supply of mutations. Before Darwin, biologists commonly believed in saltationism, the possibility of large evolutionary jumps, including immediate speciation.
A species concept is a framework for differentiating different species. There are at least 26 recognized species concepts. A species concept that works well for sexually reproducing organisms such as birds may be useless for species that reproduce asexually, such as bacteria. The scientific study of the species problem has been called microtaxonomy. One common, but sometimes difficult, question is how best to decide which species an organism belongs to, because reproductively isolated groups may not be readily recognizable, and cryptic species may be present.
The first chapter of this thesis describe the development of a general synthesis of ynimines, an under-exploited motif in organic chemistry. In the presence of an inexpensive copper catalyst and 2,2'-biquinoline, reaction of easily accessible O-acyloximes ...
The worsening of drought events with rising air temperature alters tree water relations causing severe hydraulic impairments and widespread forest mortality. Mixing tree species with contrasting hydraulic traits could reduce forest vulnerability to extreme ...
Background: Reproductive isolation can result from adaptive processes (e.g., ecological speciation and mutation-order speciation) or stochastic processes such as "system drift" model. Ecological speciation predicts barriers to gene flow between populations ...