Polyoxymethylene (POM), also known as acetal, polyacetal, and polyformaldehyde, is an engineering thermoplastic used in precision parts requiring high stiffness, low friction, and excellent dimensional stability. As with many other synthetic polymers, it is produced by different chemical firms with slightly different formulas and sold variously by such names as Delrin, Kocetal, Ultraform, Celcon, Ramtal, Duracon, Kepital, Polypenco, Tenac and Hostaform. POM is characterized by its high strength, hardness and rigidity to −40 °C. POM is intrinsically opaque white because of its high crystalline composition but can be produced in a variety of colors. POM has a density of 1.410–1.420 g/cm3. Typical applications for injection-molded POM include high-performance engineering components such as small gear wheels, eyeglass frames, ball bearings, ski bindings, fasteners, gun parts, knife handles, and lock systems. The material is widely used in the automotive and consumer electronics industry. POM's electrical resistivity is 14×1015 Ω⋅cm making it a dielectric with a 19.5MV/m breakdown voltage. Polyoxymethylene was discovered by Hermann Staudinger, a German chemist who received the 1953 Nobel Prize in Chemistry. He had studied the polymerization and structure of POM in the 1920s while researching macromolecules, which he characterized as polymers. Due to problems with thermostability, POM was not commercialized at that time. Around 1952, research chemists at DuPont synthesized a version of POM, and in 1956 the company filed for patent protection of the homopolymer. DuPont credits R. N. MacDonald as the inventor of high-molecular-weight POM. Patents by MacDonald and coworkers describe the preparation of high-molecular-weight hemiacetal-terminated (~O−CH2OH) POM, but these lack sufficient thermal stability to be commercially viable. The inventor of a heat-stable (and therefore useful) POM homopolymer was Stephen Dal Nogare, who discovered that reacting the hemiacetal ends with acetic anhydride converts the readily depolymerizable hemiacetal into a thermally stable, melt-processable plastic.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.