Concept

Page (computer memory)

Summary
A page, memory page, or virtual page is a fixed-length contiguous block of virtual memory, described by a single entry in the page table. It is the smallest unit of data for memory management in a virtual memory operating system. Similarly, a page frame is the smallest fixed-length contiguous block of physical memory into which memory pages are mapped by the operating system. A transfer of pages between main memory and an auxiliary store, such as a hard disk drive, is referred to as paging or swapping. Computer memory is divided into pages so that information can be found more quickly. The concept is named by analogy to the pages of a printed book. If a reader wanted to find, for example, the 5,000th word in the book, they could count from the first word. This would be time-consuming. It would be much faster if the reader had a listing of how many words are on each page. From this listing they could determine which page the 5,000th word appears on, and how many words to count on that page. This listing of the words per page of the book is analogous to a page table of a computer . Page Size Extension Page size is usually determined by the processor architecture. Traditionally, pages in a system had uniform size, such as 4,096 bytes. However, processor designs often allow two or more, sometimes simultaneous, page sizes due to its benefits. There are several points that can factor into choosing the best page size. A system with a smaller page size uses more pages, requiring a page table that occupies more space. For example, if a 232 virtual address space is mapped to 4 KiB (212 bytes) pages, the number of virtual pages is 220 = (232 / 212). However, if the page size is increased to 32 KiB (215 bytes), only 217 pages are required. A multi-level paging algorithm can decrease the memory cost of allocating a large page table for each process by further dividing the page table up into smaller tables, effectively paging the page table. Since every access to memory must be mapped from virtual to physical address, reading the page table every time can be quite costly.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.