Photosystem I (PSI, or plastocyanin–ferredoxin oxidoreductase) is one of two photosystems in the photosynthetic light reactions of algae, plants, and cyanobacteria. Photosystem I is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin. Ultimately, the electrons that are transferred by Photosystem I are used to produce the moderate-energy hydrogen carrier NADPH. The photon energy absorbed by Photosystem I also produces a proton-motive force that is used to generate ATP. PSI is composed of more than 110 cofactors, significantly more than Photosystem II. This photosystem is known as PSI because it was discovered before Photosystem II, although future experiments showed that Photosystem II is actually the first enzyme of the photosynthetic electron transport chain. Aspects of PSI were discovered in the 1950s, but the significance of these discoveries was not yet recognized at the time. Louis Duysens first proposed the concepts of Photosystems I and II in 1960, and, in the same year, a proposal by Fay Bendall and Robert Hill assembled earlier discoveries into a coherent theory of serial photosynthetic reactions. Hill and Bendall's hypothesis was later confirmed in experiments conducted in 1961 by the Duysens and Witt groups. Two main subunits of PSI, PsaA and PsaB, are closely related proteins involved in the binding of the vital electron transfer cofactors P_700, Acc, A_0, A_1, and F_x. PsaA and PsaB are both integral membrane proteins of 730 to 750 amino acids that contain 11 transmembrane segments. A [4Fe-4S] iron-sulfur cluster called F_x is coordinated by four cysteines; two cysteines are provided each by PsaA and PsaB. The two cysteines in each are proximal and located in a loop between the ninth and tenth transmembrane segments. A leucine zipper motif seems to be present downstream of the cysteines and could contribute to dimerisation of PsaA/PsaB.