Pierre VandergheynstPierre Vandergheynst received the M.S. degree in physics and the Ph.D. degree in mathematical physics from the Université catholique de Louvain, Louvain-la-Neuve, Belgium, in 1995 and 1998, respectively. From 1998 to 2001, he was a Postdoctoral Researcher with the Signal Processing Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. He was Assistant Professor at EPFL (2002-2007), where he is now a Full Professor of Electrical Engineering and, by courtesy, of Computer and Communication Sciences. As of 2015, Prof. Vandergheynst serves as EPFL’s Vice-Provost for Education. His research focuses on harmonic analysis, sparse approximations and mathematical data processing in general with applications covering signal, image and high dimensional data processing, computer vision, machine learning, data science and graph-based data processing. He was co-Editor-in-Chief of Signal Processing (2002-2006), Associate Editor of the IEEE Transactions on Signal Processing (2007-2011), the flagship journal of the signal processing community and currently serves as Associate Editor of Computer Vision and Image Understanding and SIAM Imaging Sciences. He has been on the Technical Committee of various conferences, serves on the steering committee of the SPARS workshop and was co-General Chairman of the EUSIPCO 2008 conference. Pierre Vandergheynst is the author or co-author of more than 70 journal papers, one monograph and several book chapters. He has received two IEEE best paper awards. Professor Vandergheynst is a laureate of the Apple 2007 ARTS award and of the 2009-2010 De Boelpaepe prize of the Royal Academy of Sciences of Belgium.
Volkan CevherVolkan Cevher received the B.Sc. (valedictorian) in electrical engineering from Bilkent University in Ankara, Turkey, in 1999 and the Ph.D. in electrical and computer engineering from the Georgia Institute of Technology in Atlanta, GA in 2005. He was a Research Scientist with the University of Maryland, College Park from 2006-2007 and also with Rice University in Houston, TX, from 2008-2009. Currently, he is an Associate Professor at the Swiss Federal Institute of Technology Lausanne and a Faculty Fellow in the Electrical and Computer Engineering Department at Rice University. His research interests include machine learning, signal processing theory, optimization theory and methods, and information theory. Dr. Cevher is an ELLIS fellow and was the recipient of the Google Faculty Research award in 2018, the IEEE Signal Processing Society Best Paper Award in 2016, a Best Paper Award at CAMSAP in 2015, a Best Paper Award at SPARS in 2009, and an ERC CG in 2016 as well as an ERC StG in 2011.
Wulfram GerstnerWulfram Gerstner is Director of the Laboratory of Computational Neuroscience LCN at the EPFL. His research in computational neuroscience concentrates on models of spiking neurons and spike-timing dependent plasticity, on the problem of neuronal coding in single neurons and populations, as well as on the link between biologically plausible learning rules and behavioral manifestations of learning. He teaches courses for Physicists, Computer Scientists, Mathematicians, and Life Scientists at the EPFL. After studies of Physics in Tübingen and at the Ludwig-Maximilians-University Munich (Master 1989), Wulfram Gerstner spent a year as a visiting researcher in Berkeley. He received his PhD in theoretical physics from the Technical University Munich in 1993 with a thesis on associative memory and dynamics in networks of spiking neurons. After short postdoctoral stays at Brandeis University and the Technical University of Munich, he joined the EPFL in 1996 as assistant professor. Promoted to Associate Professor with tenure in February 2001, he is since August 2006 a full professor with double appointment in the School of Computer and Communication Sciences and the School of Life Sciences. Wulfram Gerstner has been invited speaker at numerous international conferences and workshops. He has served on the editorial board of the Journal of Neuroscience, Network: Computation in Neural Systems',
Journal of Computational Neuroscience', and `Science'.
Martin VetterliMartin Vetterli was appointed president of EPFL by the Federal Council following a selection process conducted by the ETH Board, which unanimously nominated him.
Professor Vetterli was born on 4 October 1957 in Solothurn and received his elementary and secondary education in Neuchâtel Canton. He earned a Bachelor’s degree in electrical engineering from ETH Zurich (ETHZ) in 1981, a Master’s of Science degree from Stanford University in 1982, and a PhD from EPFL in 1986. Professor Vetterli taught at Columbia University as an assistant and then associate professor. He was subsequently named full professor in the Department of Electrical Engineering and Computer Sciences at the University of California at Berkeley before returning to EPFL as a full professor at the age of 38. He has also taught at ETHZ and Stanford University.
Professor Vetterli has earned numerous national and international awards for his research in electrical engineering, computer science and applied mathematics, including the National Latsis Prize in 1996. He is a fellow of both the Association for Computing Machinery and the Institute of Electrical and Electronics Engineers and a member the US National Academy of Engineering. He has published over 170 articles and three reference works.
Professor Vetterli’s work on the theory of wavelets, which are used in signal processing, is considered to be of major importance by his peers, and his areas of expertise, including image and video compression and self-organized communication systems, are central to the development of new information technologies. As the founding director of the National Centre of Competence in Research on Mobile Information and Communication Systems, Professor Vetterli is a staunch advocate of transdisciplinary research.
Professor Vetterli knows EPFL inside and out. An EPFL graduate himself, he began been teaching at the school in 1995, was vice president for International Affairs and then Institutional Affairs from 2004 to 2011, and served as dean of the School of Computer and Communication Sciences in 2011 and 2012. In addition to his role as president of the National Research Council of the Swiss National Science Foundation, a position he held from 2013 to 2016, he heads the EPFL’s Audiovisual Communications Laboratory (LCAV) since 1995.
Professor Vetterli has supported more than 60 students in Switzerland and the United States in their doctoral work and makes a point of following their highly successful careers, whether it is in the academic or business world.
He is the author of some 50 patents, some of which were the basis for start-ups coming out of his lab, such as Dartfish and Illusonic, while others were sold (e.g. Qualcomm) as successful examples of technology transfer. He actively encourages young researchers to market the results of their work.
Henry MarkramHenry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps.
He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band.
He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction.
He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the tabula rasa principle which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing.
In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markrams lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring.
At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the blue-print of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBMs most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markrams lab has now set the agenda towards whole brain and molecular modeling.
With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the Intense World Syndrome proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism.
Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
Carl PetersenCarl Petersen studied physics as a bachelor student in Oxford (1989-1992). During his PhD studies under the supervision of Prof. Sir Michael Berridge in Cambridge (1992-1996), he investigated cellular and molecular mechanisms of calcium signalling. In his first postdoctoral period (1996-1998), he joined the laboratory of Prof. Roger Nicoll at the University of California San Francisco (UCSF) to investigate synaptic transmission and plasticity in the hippocampus. During a second postdoctoral period, in the laboratory of Prof. Bert Sakmann at the Max Planck Institute for Medical Research in Heidelberg (1999-2003), he began working on the primary somatosensory barrel cortex, investigating cortical circuits and sensory processing. Carl Petersen joined the Brain Mind Institute of the Faculty of Life Sciences at the Ecole Polytechnique Federale de Lausanne (EPFL) in 2003, setting up the Laboratory of Sensory Processing to investigate the functional operation of neuronal circuits in awake mice during quantified behavior. In 2019, Carl Petersen became the Director of the EPFL Brain Mind Institute, with the goal to promote quantitative multidisciplinary research into neural structure, function, dysfunction, computation and therapy through technological advances.