In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions.
Mathematically vectors are elements of a vector space over a field , and for use in physics is usually defined with or . Concretely, if the dimension of is finite, then, after making a choice of basis, we can view such vector spaces as or .
The dual space is the space of linear functionals mapping . Concretely, in matrix notation these can be thought of as row vectors, which give a number when applied to column vectors. We denote this by , so that is a linear map .
Then under a choice of basis , we can view vectors as an vector with components (vectors are taken by convention to have indices up). This picks out a choice of basis for , defined by the set of relations .
For applications, raising and lowering is done using a structure known as the (pseudo-)metric tensor (the 'pseudo-' refers to the fact we allow the metric to be indefinite). Formally, this is a non-degenerate, symmetric bilinear form
In this basis, it has components , and can be viewed as a symmetric matrix in with these components. The inverse metric exists due to non-degeneracy and is denoted , and as a matrix is the inverse to .
Raising and lowering is then done in coordinates. Given a vector with components , we can contract with the metric to obtain a covector:
and this is what we mean by lowering the index. Conversely, contracting a covector with the inverse metric gives a vector:
This process is called raising the index.
Raising and then lowering the same index (or conversely) are inverse operations, which is reflected in the metric and inverse metric tensors being inverse to each other (as is suggested by the terminology):
where is the Kronecker delta or identity matrix.
Finite-dimensional real vector spaces with (pseudo-)metrics are classified up to signature, a coordinate-free property which is well-defined by Sylvester's law of inertia.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.
In tensor analysis, a mixed tensor is a tensor which is neither strictly covariant nor strictly contravariant; at least one of the indices of a mixed tensor will be a subscript (covariant) and at least one of the indices will be a superscript (contravariant). A mixed tensor of type or valence , also written "type (M, N)", with both M > 0 and N > 0, is a tensor which has M contravariant indices and N covariant indices. Such a tensor can be defined as a linear function which maps an (M + N)-tuple of M one-forms and N vectors to a scalar.
In geometry, the line element or length element can be informally thought of as a line segment associated with an infinitesimal displacement vector in a metric space. The length of the line element, which may be thought of as a differential arc length, is a function of the metric tensor and is denoted by . Line elements are used in physics, especially in theories of gravitation (most notably general relativity) where spacetime is modelled as a curved Pseudo-Riemannian manifold with an appropriate metric tensor.
Compressed Sensing teaches us that measurements can be traded for offline computation if the signal being sensed has a simple enough representation. Proper decoders can exactly recover the high-dimensional signal of interest from a lower-dimensional vector ...
This thesis is a study of the global well-posedness of the Cauchy problems for half-wave maps from the Minkowski space of dimension n+1 to the 2-dimensional sphere and the hyperbolic plane. The work is mainly based on the results from Krieger-Sire 17' in ...
In motor-related brain regions, movement intention has been successfully decoded from invivo spike train by isolating a lower-dimension manifold that the high-dimensional spiking activity is constrained to. The mechanism enforcing this constraint remains u ...