Data-flow analysisData-flow analysis is a technique for gathering information about the possible set of values calculated at various points in a computer program. A program's control-flow graph (CFG) is used to determine those parts of a program to which a particular value assigned to a variable might propagate. The information gathered is often used by compilers when optimizing a program. A canonical example of a data-flow analysis is reaching definitions.
Static single-assignment formIn compiler design, static single assignment form (often abbreviated as SSA form or simply SSA) is a property of an intermediate representation (IR) that requires each variable to be assigned exactly once and defined before it is used. Existing variables in the original IR are split into versions, new variables typically indicated by the original name with a subscript in textbooks, so that every definition gets its own version. In SSA form, use-def chains are explicit and each contains a single element.
Dead-code eliminationIn compiler theory, dead-code elimination (DCE, dead-code removal, dead-code stripping, or dead-code strip) is a compiler optimization to remove dead code (code that does not affect the program results). Removing such code has several benefits: it shrinks program size, an important consideration in some contexts, and it allows the running program to avoid executing irrelevant operations, which reduces its running time. It can also enable further optimizations by simplifying program structure.
Use-define chainWithin computer science, a Use-Definition Chain (UD Chain) is a data structure that consists of a use, U, of a variable, and all the definitions, D, of that variable that can reach that use without any other intervening definitions. A UD Chain generally means the assignment of some value to a variable. A counterpart of a UD Chain is a Definition-Use Chain (DU Chain), which consists of a definition, D, of a variable and all the uses, U, reachable from that definition without any other intervening definitions.
Optimizing compilerIn computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption (the last three being popular for portable computers). Compiler optimization is generally implemented using a sequence of optimizing transformations, algorithms which take a program and transform it to produce a semantically equivalent output program that uses fewer resources or executes faster.
Control-flow graphIn computer science, a control-flow graph (CFG) is a representation, using graph notation, of all paths that might be traversed through a program during its execution. The control-flow graph was discovered by Frances E. Allen, who noted that Reese T. Prosser used boolean connectivity matrices for flow analysis before. The CFG is essential to many compiler optimizations and static-analysis tools. In a control-flow graph each node in the graph represents a basic block, i.e.
Program optimizationIn computer science, program optimization, code optimization, or software optimization, is the process of modifying a software system to make some aspect of it work more efficiently or use fewer resources. In general, a computer program may be optimized so that it executes more rapidly, or to make it capable of operating with less memory storage or other resources, or draw less power. Although the word "optimization" shares the same root as "optimal", it is rare for the process of optimization to produce a truly optimal system.
Common subexpression eliminationIn compiler theory, common subexpression elimination (CSE) is a compiler optimization that searches for instances of identical expressions (i.e., they all evaluate to the same value), and analyzes whether it is worthwhile replacing them with a single variable holding the computed value. In the following code: a = b * c + g; d = b * c * e; it may be worth transforming the code to: tmp = b * c; a = tmp + g; d = tmp * e; if the cost of storing and retrieving tmp is less than the cost of calculating b * c an extra time.
CompilerIn computing, a compiler is a computer program that translates computer code written in one programming language (the source language) into another language (the target language). The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a low-level programming language (e.g. assembly language, object code, or machine code) to create an executable program. There are many different types of compilers which produce output in different useful forms.
Machine codeIn computer programming, machine code is computer code consisting of machine language instructions, which are used to control a computer's central processing unit (CPU). Although decimal computers were once common, the contemporary marketplace is dominated by binary computers; for those computers, machine code is "the binary representation of a computer program which is actually read and interpreted by the computer. A program in machine code consists of a sequence of machine instructions (possibly interspersed with data).