G-testIn statistics, G-tests are likelihood-ratio or maximum likelihood statistical significance tests that are increasingly being used in situations where chi-squared tests were previously recommended. The general formula for G is where is the observed count in a cell, is the expected count under the null hypothesis, denotes the natural logarithm, and the sum is taken over all non-empty cells. Furthermore, the total observed count should be equal to the total expected count:where is the total number of observations.
Karl PearsonKarl Pearson (ˈpɪərsən; born Carl Pearson; 27 March 1857 – 27 April 1936) was an English mathematician and biostatistician. He has been credited with establishing the discipline of mathematical statistics. He founded the world's first university statistics department at University College London in 1911, and contributed significantly to the field of biometrics and meteorology. Pearson was also a proponent of social Darwinism and eugenics, and his thought is an example of what is today described as scientific racism.
Erlang distributionThe Erlang distribution is a two-parameter family of continuous probability distributions with support . The two parameters are: a positive integer the "shape", and a positive real number the "rate". The "scale", the reciprocal of the rate, is sometimes used instead. The Erlang distribution is the distribution of a sum of independent exponential variables with mean each. Equivalently, it is the distribution of the time until the kth event of a Poisson process with a rate of .
Generalized chi-squared distributionIn probability theory and statistics, the generalized chi-squared distribution (or generalized chi-square distribution) is the distribution of a quadratic form of a multinormal variable (normal vector), or a linear combination of different normal variables and squares of normal variables. Equivalently, it is also a linear sum of independent noncentral chi-square variables and a normal variable. There are several other such generalizations for which the same term is sometimes used; some of them are special cases of the family discussed here, for example the gamma distribution.
Noncentral distributionNoncentral distributions are families of probability distributions that are related to other "central" families of distributions by means of a noncentrality parameter. Whereas the central distribution describes how a test statistic is distributed when the difference tested is null, noncentral distributions describe the distribution of a test statistic when the null is false (so the alternative hypothesis is true). This leads to their use in calculating statistical power.
Half-normal distributionIn probability theory and statistics, the half-normal distribution is a special case of the folded normal distribution. Let follow an ordinary normal distribution, . Then, follows a half-normal distribution. Thus, the half-normal distribution is a fold at the mean of an ordinary normal distribution with mean zero. Using the parametrization of the normal distribution, the probability density function (PDF) of the half-normal is given by where .
Reduced chi-squared statisticIn statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating and variance of unit weight in the context of weighted least squares. Its square root is called regression standard error, standard error of the regression, or standard error of the equation (see ) It is defined as chi-square per degree of freedom: where the chi-squared is a weighted sum of squared deviations: with inputs: variance , observations O, and calculated data C.
Differential entropyDifferential entropy (also referred to as continuous entropy) is a concept in information theory that began as an attempt by Claude Shannon to extend the idea of (Shannon) entropy, a measure of average (surprisal) of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just assumed it was the correct continuous analogue of discrete entropy, but it is not. The actual continuous version of discrete entropy is the limiting density of discrete points (LDDP).
Fisher's exact testFisher's exact test is a statistical significance test used in the analysis of contingency tables. Although in practice it is employed when sample sizes are small, it is valid for all sample sizes. It is named after its inventor, Ronald Fisher, and is one of a class of exact tests, so called because the significance of the deviation from a null hypothesis (e.g., p-value) can be calculated exactly, rather than relying on an approximation that becomes exact in the limit as the sample size grows to infinity, as with many statistical tests.
Wishart distributionIn statistics, the Wishart distribution is a generalization to multiple dimensions of the gamma distribution. It is named in honor of John Wishart, who first formulated the distribution in 1928. Other names include Wishart ensemble (in random matrix theory, probability distributions over matrices are usually called "ensembles"), or Wishart–Laguerre ensemble (since its eigenvalue distribution involve Laguerre polynomials), or LOE, LUE, LSE (in analogy with GOE, GUE, GSE).