Summary
Space weather is a branch of space physics and aeronomy, or heliophysics, concerned with the time varying conditions within the Solar System, including the solar wind, emphasizing the space surrounding the Earth, including conditions in the magnetosphere, ionosphere, thermosphere, and exosphere. Space weather is distinct from, but conceptually related to, the terrestrial weather of the atmosphere of Earth (troposphere and stratosphere). The term "space weather" was first used in the 1950s and came into common usage in the 1990s. Later, it was generalized to a "space climate" research discipline, which focuses on general behaviors of longer and larger-scale variabilities and effects. For many centuries, the effects of space weather were noticed, but not understood. Displays of auroral light have long been observed at high latitudes. In 1724, George Graham reported that the needle of a magnetic compass was regularly deflected from magnetic north over the course of each day. This effect was eventually attributed to overhead electric currents flowing in the ionosphere and magnetosphere by Balfour Stewart in 1882, and confirmed by Arthur Schuster in 1889 from analysis of magnetic observatory data. In 1852, astronomer and British Major General Edward Sabine showed that the probability of the occurrence of magnetic storms on Earth was correlated with the number of sunspots, demonstrating a novel solar–terrestrial interaction. In 1859, a great magnetic storm caused brilliant auroral displays and disrupted global telegraph operations. Richard Christopher Carrington correctly connected the storm with a solar flare that he had observed the day before in the vicinity of a large sunspot group, demonstrating that specific solar events could affect the Earth. Kristian Birkeland explained the physics of aurorae by creating artificial ones in his laboratory, and predicted the solar wind. The introduction of radio revealed that periods of extreme static or noise occurred.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.